首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of the flame front surfaces in turbulent premixed propane/air flames were investigated. Flame front images were obtained using laser-induced fluorescence (LIF) of OH and Mie scattering on two Bunsen–type burners of 11.2-mm and 22.4-mm diameters. Nondimensional turbulence intensity, u′/SL, was varied from 0.9 to 15, and the Reynolds number, based on the integral length scale, varied from 40 to 467. Approximately 100 images were recorded for each experimental condition. Fractal parameters (fractal dimension, inner and outer cutoffs) and corresponding standard deviations were determined by analysis of the flame front images using the caliper technique. The fractal dimensions derived from OH and Mie scattering images are almost identical. However, inner and outer cutoffs from OH images are consistently higher than those obtained from Mie scattering. The self-similar region of the flame front wrinkling is about a decade for all flames studied. In the nondimensional turbulence intensity range from 1 to 15, it was found that the mean fractal dimension is about 2.2 and it does not show any dependence on turbulence intensity. This contradicts the findings of the previous studies that showed that the fractal dimension asymptotically reaches to 2.35–2.37 when the nondimensional turbulence intensity u′/SL exceeds 3. It is shown that the reason for this discrepancy is the image analysis method used in the previous studies. Examples are given to show the inadequacy of the circle method used in previous studies for extraction of fractal parameters from flame front images. The fractal parameters obtained so far, in this and previous studies, are not capable of correctly predicting the turbulent burning velocity using the available fractal area closure model.  相似文献   

2.
A new set of petascale direct numerical simulations (DNS) modelling lean hydrogen combustion with detailed chemistry in a temporally evolving slot-jet configuration is presented as a database for the development and validation of models for premixed turbulent combustion. The jet Reynolds number is 10,000, requiring grid numbers up to nearly seven billion, which was achieved by computation on 120,000 processor cores. In contrast to many prior DNS studies, a mean shear exists that drives strong turbulent mixing within the flame structure. Three cases are simulated with different Damköhler numbers, while Reynolds number is held fixed. Basic statistics are presented showing that integrated burning rates up to approximately six times the laminar burning rate are obtained. It is shown that increased flame surface area accounts for most of the enhanced burning while increases in the burning rate per unit area also play an important contribution.The database is then used to assess a new model of flame wrinkling intended for large-eddy simulations (LES). The approach draws on concepts from fractal geometry, requiring the modelling of an inner cut-off scale representing the smallest scale of flame wrinkling, and the fractal dimension controlling the resolution dependence of the unresolved flame surface area. In contrast to previous modelling, it is argued that the inner cut-off should be filter-size invariant in an inertial range. Then, dimensional and physical reasoning together with Damköhler’s limiting scaling laws for the turbulent flame speed are used to infer the cut-off and fractal dimension in limiting regimes. Two methods of determining the fractal dimension are proposed: a static, algebraic expression or a dynamic approach exploiting a Germano-type identity. Finally the model is compared against the DNS in a priori tests and is found to give excellent results, quantitatively capturing the trends with time, space, filter size and Damköhler number.  相似文献   

3.
Three-dimensional direct numerical simulation data of H2-air turbulent swirling premixed combustion at two different swirl numbers are analysed to investigate the local reaction zone morphology and its relation with local turbulent motions at different length scales. The effect of small scale turbulent mixing on local flames is investigated, and the results have shown that the contribution of microscale turbulent diffusivity on the local flamelet is insignificant, although there is some evidence of flame thinning for the higher swirl number case. The flame morphology such as high-level convolution and interacting flames, on the other hand, shows greater influence on local flamelets, suggesting the importance of local reaction zone topology on overall combustion processes. The local reaction zones are analysed by using the shapefinders to quantify their topology. Although the shapefinders showed various local reaction zone shapes consisting of “pancakes” and “tubes” and intermissive intense reaction zone distributions, the smallest characteristic length scale shows that the local reaction zones are thin. Finally, the relationship between these local reaction zone topology and turbulent motions at different sizes were discussed. The local reaction zone topology has a direct relation with Taylor microscale, integral length scale and their associated velocity scale, whereas almost no correlation is observed with Kolmogorov length scale, in the presence of inhomogeneous turbulence and strong mean shears. The present results suggest the importance of Taylor microscale on flame surface topology, which is often understated in turbulent combustion modelling frameworks.  相似文献   

4.
We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive flow code. A simplified reaction-diffusion model represents a stoichiometric H2-air mixture. The system being modeled represents turbulent combustion with the Damköhler number Da=0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zone structure of these is virtually identical to that of the planar laminar flame, while the preheat zone is broadened by approximately a factor of two. Consequently, the system evolution represents turbulent combustion in the thin reaction zone regime. The turbulent cascade fails to penetrate the internal flame structure, and thus the action of small-scale turbulence is suppressed throughout most of the flame. Finally, our results suggest that for stoichiometric H2-air mixtures, any substantial flame broadening by the action of turbulence cannot be expected in all subsonic regimes.  相似文献   

5.
研究了不同湍流燃烧模型(EBU、CTC和PaSR模型)对直喷式柴油机燃烧过程中火焰结构和排放物生成的影响。分析了缸内平均量(放热率、缸内平均温度、NO和soot)变化情况和OH、NO及soot分布,并与试验结果进行了对比分析。研究结果表明:不同燃烧模型虽然能得到相近的缸内平均量结果,但预测得到的缸内OH、NO、soot分布和温度分布情况存在一定差异;其中以EBU模型的预测结果与试验偏离最大;PaSR模型能较准确预测缸内变量微观分布情况和火焰脱离喷孔的距离,其预测得到的火焰结构与Dec1997年提出的概念模型一致。  相似文献   

6.
In this work, the outcomes of interactions of counter-rotating vortex pairs with developing ignition kernels are studied. The conditions are selected to represent those in a lean-burn natural-gas engine with hot-jet ignition. The evolution of flame surface area during kernel–vortex interaction is quantitatively and qualitatively examined. It is observed that flame development is accelerated and the net flame surface area growth rate, i.e. heat release rate, increased with increasing vortex velocity. In general, increasing the vortex length scale increases the surface growth rate, i.e. increases heat release rates, but for small length scales, i.e. when the ratio of vortex length scale to kernel diameter is small, high flame curvature induced during the interaction leads to flame weakening and slower growth rates. When the vortex velocity is high relative to the flame speed and the length scale is comparable to the kernel diameter, the vortex breaks through the ignition kernel carrying with it hot products of combustion. This accelerates growth of the flame surface area and heat release rates compared to a kernel with no vortex interaction. On decreasing the vortex velocity and increasing the length scale, the wrinkling of the kernel becomes important. This also results in increased surface growth rates and higher heat release rates.  相似文献   

7.
Knowledge of the fractal properties of premixed flame surfaces can potentially be used to help develop turbulent combustion models. Here, direct numerical simulations of low Damköhler number flames are used to analyse the fractal nature of the flames. Two sets of data are considered: (i) thermochemical hydrogen–air turbulent premixed plane-jet flames with detailed chemistry and (ii) thermonuclear flames in type Ia supernovae. A three-dimensional box counting method is used to investigate fractal dimension of the flame surface, characterising the self similarity of flame fronts. In the premixed flames, the fractal dimension is found to vary in time between 2.1 and 2.7. The supernovae flames in distributed combustion regimes yield fractal dimension about 2.7. The results for the maximum fractal dimensions are higher than previously reported. They are explained theoretically by a Reynolds number similarity argument which posits that the high Reynolds number, low Damköhler number limiting value of the fractal dimension is 8/3. Also tested is Mandelbrot’s fractal additive law which relates the fractal dimension determined in two dimensions, which is typical of experimental measurements, to that in three dimensions. The comparison of the fractal dimension in both two-dimensional and three-dimensional spaces supports the additive law, even though the flames considered do not formally satisfy isotropy. Finally, the inner-cut off is extracted from the hydrogen flames and found to be consistent in order of magnitude with Kolmogorov scaling.  相似文献   

8.
In this study, the role of Lewis and Damköhler numbers on the premixed flame propagation through micro-organic dust particles is investigated. It is presumed that the fuel particles vaporize first to yield a gaseous fuel, which is oxidized in the gas phase. In order to simulate the combustion process, the flame structure is composed of four zones; a preheat zone, a vaporization zone, a reaction zone and finally a post flame zone, respectively. Then the governing equations, required boundary conditions and matching conditions are applied for each zone and the standard asymptotic method is used in order to solve these differential equations. Consequently the important parameters on the combustion phenomenon of organic dust particles such as gaseous fuel mass fraction, organic dust mass fraction and burning velocity with the various numbers of Lewis, Damköhler and the onset of vaporization are plotted in figures. This prediction has a reasonable agreement with experimental data of micro-organic dust particle combustion.  相似文献   

9.
《Combustion and Flame》1986,65(1):79-101
Methods of activation-energy asymptotics are employed to investigate regimes of combustion of steady, planar, adiabatic deflagrations involving a four-step kinetic mechanism modeled after that of the ozone decomposition flame. The analysis demonstrates the occurrence of previously known regimes having flame structures that involve a nonreactive preheat zone followed by a narrow reactive-diffusive zone, in which a steady-state approximation for the reaction intermediary may or may not apply and downstream from which a recombination zone may or may not exist. In addition, a new regime is identified having a two-zone flame structure in which the intermediary is generated in a downstream zone that obeys a steady-state approximation for temperature and diffuses into an upstream zone where the primary heat release occurs. In this regime convection, diffusion, and reaction all are important in both zones, and heat release persists in the preheat zone all the way to the cold boundary. For the ozone flame new results for burning velocities are given and regimes are identified as functions of pressure, initial temperature, and initial ozone concentration.  相似文献   

10.
An experimental study to identify the effect of hydrogen enrichment and differential diffusion on the flame broadening is conducted. Turbulent lean premixed flames in the Broadened Preheat–Thin Reaction (BP-TR) regime are obtained. The flames are stabilized on a Bunsen burner and CH4/H2/air mixtures are adopted with three hydrogen fractions of 0, 30% and 60%. The preheat zone and heat release zone are captured with the multi-species Planar Laser-Induced Fluorescence (PLIF) of OH and CH2O radicals. Flame thicknesses of the preheat and heat release layers are measured. Results show broadened preheat zone and thin heat release layers for the flames, as predicted by the BP-TR regime. The preheat zone thickness can be increased to about 3–6 times compared to the laminar preheat thickness. An apparently decreased preheat zone thickness with hydrogen addition is observed. The differential diffusion is anticipated to locally thicken the heat release zone along the flame front. The mean heat release thickness is nearly not affected by the turbulence or hydrogen addition.  相似文献   

11.
以具有279机理的天然气燃烧为例,分别采用涡耗散概念EDC湍流燃烧模型、修正的涡旋破碎EBU湍流燃烧模型以及基于时均值的Arrhenius关系,对燃烧室内复杂的湍流反应流进行了三维数值模拟,并对预测结果进行了分析.结果表明,EDC模型可以较好地反映湍流化学作用,并且能够较好地描述各基元反应,从而为工程实际复杂燃烧情况下其有害排放、中间物质、自由基和痕迹物质生成机理的研究提供基础。  相似文献   

12.
The purpose of this study is to present a new tool for extracting the laminar burning velocity in the case of spherically outward expanding flames. This new procedure makes it possible to determine the laminar burning velocity directly based on the flame displacement speed and the global fresh gas velocity near the preheat zone of the flame front. It therefore presents a very interesting alternative to the standard method (commonly used in the literature), which is based on the flame front displacement and the ratio of unburned and burned gas densities. The influence of external flame stretching on the burning velocity can be characterized and the Markstein length relative to the unburned gases (i.e., fresh gases) can be deduced by using this new tool. Contrary to the standard procedure, the unstretched laminar burning velocity is determined directly without using the fuel mixture properties. The temporal evolution of the flame front is visualized by high-speed laser tomography and the algorithm, based on a tomographic image correlation method, makes it possible to accurately measure the fresh gas velocity near the preheat zone of the flame front. The measurements of laminar flame speeds are carried out in a high-pressure and high-temperature constant-volume vessel over a wide range of equivalence ratios for methane, ethanol, and isooctane/air mixtures. To validate the experimental facility and the postprocessing of the flame images, fresh gas velocities and unstretched laminar burning velocities, as well as Markstein lengths relative to burned and unburned gases, are presented and compared with experimental and numerical results of the literature for methane/air flames. New results concerning ethanol/air and isooctane/air flames are presented for various experimental conditions (373 K, equivalence ratios range 0.7–1.5, pressure range 0.1–5 MPa).  相似文献   

13.
针对汽油机的准维湍流燃烧模型进行了发展研究,将分形表示的湍流燃烧速度并入燃烧模型.研究表明:分形是一种模拟燃烧过程的有效手段,通过对分形中低端转捩尺度的选取分析,得出Gibson尺度比Kolmogorov尺度更适合作为低端转捩尺度.  相似文献   

14.
This paper discusses the fractal structure of a hydrodynamically unstable flame with the background of the risk assessment of an explosion hazard. An accidental gas explosion usually occurs in a large-scale quiescent combustible mixture. A spherical flame outwardly propagates from the ignition point, and the flame accelerates owing to hydrodynamic instability. From the viewpoint of risk assessment, it is essential to consider such an increase in flame speed because the damage of an explosion is significantly influenced by the flame speed. Because hydrodynamically unstable flames have fractal structures and the flame area (and hence the flame speed) can be estimated using the fractal dimension, it is important to know the fractal dimension of the flame under the condition of a potential accidental explosion. Three methods (a box-counting method, a Fourier analysis, and a method based on the scale dependence of the flame speed) are tested to calculate the fractal dimension of a purely hydrodynamically unstable flame that is neutral in terms of diffusive-thermal instability. These methods are applied to the numerical solution of the Sivashinsky equation, but they can be also used to the result of an ordinary CFD calculation. The fractal structure of a purely diffusive-thermally unstable flame, which is neutral in terms of hydrodynamic instability, is also studied for comparison. The results show that all the three methods yield consistent fractal dimensions for the hydrodynamically unstable flame, whereas the diffusive-thermally unstable flame does not exhibit fractal characters. This is because the former flame has a hierarchical structure, whereas wrinkles of a specific wavelength mainly grow in the latter flame. The dependence of the fractal dimension on the thermal expansion ratio is also discussed.  相似文献   

15.
The structures of freely propagating rich CH4/air and CH4/O2 flames were studied numerically using a relatively detailed reaction mechanism. Species diffusion was modeled using five different methods/assumptions to investigate the effects of species diffusion, in particular H2 and H, on superadiabatic flame temperature. With the preferential diffusion of H2 and H accounted for, significant amount of H2 and H produced in the flame front diffuse from the reaction zone to the preheat zone. The preferential diffusion of H2 from the reaction zone to the preheat zone has negligible effects on the phenomenon of superadiabatic flame temperature in both CH4/air and CH4/O2 flames. It is therefore demonstrated that the superadiabatic flame temperature phenomenon in rich hydrocarbon flames is not due to the preferential diffusion of H2 from the reaction zone to the preheat zone as recently suggested by Zamashchikov et al. [V.V. Zamashchikov, I.G. Namyatov, V.A. Bunev, V.S. Babkin, Combust. Explosion Shock Waves 40 (2004) 32]. The suppression of the preferential diffusion of H radicals from the reaction zone to the preheat zone drastically reduces the degree of superadiabaticity in rich CH4/O2 flames. The preferential diffusion of H radicals plays an important role in the occurrence of superadiabatic flame temperature. The assumption of unity Lewis number for all species leads to the suppression of H radical diffusion from the reaction zone to the preheat zone and significant diffusion of CO2 from the postflame zone to the reaction zone. Consequently, the degree of superadiabaticity of flame temperature is also significantly reduced. Through reaction flux analyses and numerical experiments, the chemical nature of the superadiabatic flame temperature phenomenon in rich CH4/air and CH4/O2 flames was identified to be the relative scarcity of H radical, which leads to overshoot of H2O and CH2CO in CH4/air flames and overshoot of H2O in CH4/O2 flames.  相似文献   

16.
17.
18.
采用实验研究的方法探讨了反应物预热温度与稀释率两个因素对稀释燃烧火焰稳定性的影响.实验以氮气稀释的甲烷-空气对冲扩散火焰为研究对象,确定了不同反应物预热温度与氧化剂稀释率(氧气体积分数)时火焰的熄火极限,结果表明,增大反应物预热温度拓宽了火焰稳定燃烧区域,而增加氧化剂稀释率(降低氧气体积分数)会降低稀释火焰的稳定性,二者对火焰稳定性的影响作用相反.为了进一步分析反应物预热温度与稀释率对火焰稳定性的影响程度,引入了估算的Damkohler数,分析表明,在实验研究范围内,反应物预热温度对火焰稳定性的影响比稀释率的影响显著,是火焰稳定性的主要影响因素.  相似文献   

19.
Results are presented for the variation in burning velocities with equivalence ratio and reactant gases preheat temperature for a number of chlorinated hydrocarbon compounds in methane-air mixtures of different concentrations at atmospheric pressure. Flame velocity of the mixture is determined with a Bunsen burner by measuring the unignited mixture approach flow rates and the area of the flame front. The method provides acceptable results and compares favorably with widely published methane flame data. Activation energy for a particular chlorinated compound was calculated by relating the flame velocity to the overall combustion reaction rate. Results are compared with nonchlorinated compounds and the available data in the literature. The reasons for discrepancies are discussed. The results show that increasing chlorine content decreases flame velocity and shifts the maximum flame velocity from fuel rich toward fuel lean. The flame velocity increases with increasing gas preheat temperature.  相似文献   

20.
This work presents the development and implementation of spray combustion modelling based on the spray size distribution moments. In this spray model, the droplet size distribution of spray is characterised by the first four moments related to number, radius, surface-area and volume of droplets, respectively. The governing equations for gas phase and liquid phase employed are solved by the finite volume method based on an Eulerian framework. These constructed equations and source terms are derived based on the moment-average quantities which are the key concept for this work. The sub-model employed for ignition and combustion is the coupling reaction rate between Arrhenius model and Eddy Break-Up model (EBU) via a reaction progress variable. The results obtained from simulation are compared with the experimental and simulation data in the literature in order to assess the accuracy of present model. Comparing with the experimental results, present approach is capable to provide a qualitatively reasonable prediction for auto-ignition. In addition, the flame area developed during the combustion progress corresponds with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号