首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A GIP-14 diesel fuel isodewaxing catalyst based on a mixture of zeolites with different pore structures and entrance sizes and transition metals Ni and Mo as hydrogenating components is developed. Its stability during operation is studied. It is shown that the cold filter plugging point (CFPP) of the diesel fuel reaches values below–38°C at its yield of 92–93 wt %, temperatures of 305–310°C, and a feedstock hourly space velocity (FHSV) of 3 h?1. A pilot diesel fuel sample is tested according to GOST (Russian State Standard) R 55475–2013. Comparative tests of domestic and foreign catalysts show that the developed GIP-14 catalyst conforms to international standards and allows the production of diesel fuel with required cold flow properties under milder conditions (300°C against 320–325°C for the foreign catalyst) at a higher FHSV (3 h?1 against 2 h?1). The production of GIP-14 catalyst is planned to be launched in 2017.  相似文献   

2.
An optimization‐based process synthesis framework is proposed for the conversion of natural gas to liquid transportation fuels. Natural gas conversion technologies including steam reforming, autothermal reforming, partial oxidation to methanol, and oxidative coupling to olefins are compared to determine the most economic processing pathway. Hydrocarbons are produced from Fischer–Tropsch (FT) conversion of syngas, ZSM‐5 catalytic conversion of methanol, or direct natural gas conversion. Multiple FT units with different temperatures, catalyst types, and hydrocarbon effluent compositions are investigated. Gasoline, diesel, and kerosene are generated through upgrading units involving carbon‐number fractionation or ZSM‐5 catalytic conversion. A powerful deterministic global optimization method is introduced to solve the mixed‐integer nonlinear optimization model that includes simultaneous heat, power, and water integration. Twenty‐four case studies are analyzed to determine the effect of refinery capacity, liquid fuel composition, and natural gas conversion technology on the overall system cost, the process material/energy balances, and the life cycle greenhouse gas emissions. © 2013 American Institute of Chemical Engineers AIChE J, 59: 505–531, 2013  相似文献   

3.
H2S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O2-blown coal-derived synthesis gas. The H2S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H2S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H2S and 0.3 order in O2.  相似文献   

4.
M. Masood  M.M. Ishrat 《Fuel》2008,87(7):1372-1378
The drawback of lean operation with hydrocarbon fuels is a reduced power output. Lean operation of hydrocarbon engines has additional drawbacks. Lean mixtures are hard to ignite, despite the mixture being above the low fire (point) limit of the fuel. This results in misfire, which increases un-burned hydrocarbon emissions, reduces performance and wastes fuel. Hydrogen can be used in conjunction with compact liquid fuels such as gasoline; alcohol or diesel provided each is stored separately.Mixing hydrogen with other hydrocarbon fuels reduces all of these drawbacks. Hydrogen’s low ignition energy limit and high burning speed makes the hydrogen/hydrocarbon mixture easier to ignite, reducing misfire and thereby improving emissions, performance and fuel economy. Regarding power output, hydrogen augments the mixture’s energy density at lean mixtures by increasing the hydrogen-to-carbon ratio, and thereby improves torque at wide-open throttle conditions.This paper involves the simulation program for determining the mole fraction of each of the exhaust species when the hydrogen is burnt along with diesel and the results are presented. The proportion of hydrogen in the hydrogen-diesel blend affecting the mole fraction of the exhaust species is also simulated. Experimental investigations were carried out, in hydrogen-diesel dual fuel mode, which showed a good agreement between the predicted and experimental results. The program code developed is valid for any combination of dual fuels.  相似文献   

5.
Flow‐through type tubular solid oxide fuel cells were successfully fabricated and operated with a single‐chamber configuration for realizing the simultaneous generation of electric power and synthesis gas from methane by integrating a downstream catalyst into the fuel cell reactor. A new operation mode, which completely eliminated the gas diffusion between cathode side and anode side, is proposed. The cell showed high open‐circuit voltages of 1.02–1.08 V at the furnace temperature range of 650–800°C when operating on CH4‐O2 gas mixture at a molar ratio of 2:1. A peak power density of approximately 300 mW cm?2 and a maximum power output of 1.5 W were achieved for a single cell with an effective cathode geometric surface area of 5.4 cm2 at the furnace temperature of 750°C. The in‐situ initialization of the cell using CH4‐O2 gas mixture was also realized via applying an effective catalyst into the tubular cell. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1036–1044, 2014  相似文献   

6.
The Fischer–Tropsch (FT) synthesis is used to produce chemicals, gasoline and diesel fuel. The FT products are predominantly linear, hence the quality of the diesel fuel is very high, having cetane numbers of up to 75. Since purified synthesis gas is used in the FT process all the products are S‐ and N‐free. In this review the production of syngas and the various options used in the FT process (reactors and catalyst types, and high and low temperature operation) are discussed. The best FT option for producing high quality diesel is using cobalt‐based catalyst in slurry phase reactor, gearing the process for high wax production and then selectively hydrocracking the wax to diesel fuel. The overall diesel pool has a high cetane number, the aromatic S and N contents are zero and the exhaust emissions are significantly lower than for standard diesel fuels. © 2001 Society of Chemical Industry  相似文献   

7.
Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer–Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99–110% H3PO4, a temperature range of 140–230 °C and using C3–C6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H3PO4, H4P2O7 and H5P3O10. For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H3PO4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration.  相似文献   

8.
A catalytic heater design was proposed for an external combustion engine. This design is based on the partial oxidation or autothermal conversion of hydrocarbon fuel to syngas and its further oxidation with heat generation in a radial catalytic reactor integrated with a tubular heat exchanger. The theoretical analysis of operational regimes for a catalytic heater with a thermal power of 25–50 kW was performed with regard to the distribution of gas and the mathematical modeling of processes in a catalyst bed integrated with a heat exchanger, and some estimates were given for the performance of an external combustion engine. The conditions providing a uniform distribution of gas along the length of a radial reactor with suction of a reaction mixture into the catalyst bed were determined. A design of catalytic heating system elements was developed, and some layout solutions that provide a rational mutual arrangement of system components were created.  相似文献   

9.
High temperature PEMFCs based on phosphoric acid‐doped ABPBI membranes have been prepared and characterised. At 160 °C and ambient pressure fuel cell power densities of 300 mW cm–2 (with hydrogen and air as reactants) and 180 mW cm–2 (with simulated diesel reformate/air) have been achieved. The durability of these membrane electrode assemblies (MEAs) in the hydrogen/air mode of operation at different working conditions has been measured electrochemically and has been correlated to the cell resistivity, the phosphoric acid loss rate and the catalyst particle size. Under stationary conditions, a voltage loss of only –25 μV h–1 at a current density of 200 mA cm–2 has been deduced from a 1,000 h test. Under dynamic load changes or during start–stop cycling the degradation rate was significantly higher. Leaching of phosphoric acid from the cell was found to be very small and is not the main reason for the performance loss. Instead an important increase in the catalyst particle size was observed to occur during two long‐term experiments. At high gas flows of hydrogen and air ABPBI‐based MEAs can be operated at temperatures below 100 °C for several hours without a significant irreversible loss of cell performance and with only very little acid leaching.  相似文献   

10.
11.
Hydrocracking is used in the petroleum industry to convert low-quality feedstocks into highly-valued transportation fuels. This process is the best source of low-sulfur and low-aromatics diesel fuel as well as high-smoke point jet fuel. Many approaches have been proposed for solving optimization of hydrocracking units in the last decades, but they usually neglect the reaction in hydrotreater where hydrocarbon cracking often occurs, thus leading to suboptimal solutions in industrial problems. Unlike existing literature, this paper considers the hydrocarbon cracking reactions in hydrotreater and hydrocracker simultaneously. The models are based on energy balance, mass balance and a discrete lumped model approaches for kinetic modeling. Before optimization, the properties of feedstock are predicted with ASPEN PLUS by using laboratory data from the refinery, and then the model parameters are estimated with genetic algorithm (GA) based on industrial data and validated by comparing the simulating results with industrial data. To improve the yield of the lighter products, the operation conditions are optimized by GA and Sequential Quadratic Programming (SQP). The yields of the diesel or kerosene increase with the proposed approach.  相似文献   

12.
To satisfy the future needs of electrical power in passenger cars and trucks, Webasto AG develops an auxiliary power unit (APU), based on a high temperature solid oxide fuel cell (SOFC). The fuel gas for the stack is generated by catalytic partial oxidation (CPO) of diesel fuel, using a reformer without an additional water supply. This minimizes system complexity, control effort and production costs. This article focuses on experimental results of a diesel reformer and the preliminary work for the supply of a suitable unit for the generation of the fuel/air mixture. Measurements of start-up and steady state operation of the vaporizer are diagrammed, followed by a brief summary of the results obtained from laboratory scale tests. Based on these results, two different CPO reformer concepts are developed and tested under realistic conditions to evaluate their potential. Finally, the current status of system integration for a self-sustaining and stand-alone diesel APU is summarized.  相似文献   

13.
FC-14新一代多产柴油单段加氢裂化催化剂性能研究   总被引:2,自引:0,他引:2  
在重油加氢试验装置上,以伊郎VGO、大庆VGO和催化柴油等为原料,对FC-14新一代多产柴油单段加氢裂化催化剂性能进行了评价。结果表明,FC-14催化剂在保持常规无定型加氢裂化催化剂最大量生产低凝柴油 特点的前提下,活性显著提高,中间馏分油产品质量明显改善,并且稳定性好,因而可以在中、高压条件下加工高干点蜡油进料和劣质催化柴油进料,最大量生产优质柴油产品。  相似文献   

14.
Methanol-to-diesel (MTD) means a synthetic diesel fuel, its raw material is methanol. And it is a liquid alcohol ether mixture with appropriate amount of additives, which can be blended with diesel fuel at various levels. It was synthesized by methanol with 1,2-epoxypropane and epoxyethane using modified calcined Mg/Al hydroxides as catalysts. The test and study on the physical properties of MTD and the fuel consumption and emissions of diesel engine using the mixed MTD and diesel fuel have been performed. The results indicates that there was no significant difference in the power values of diesel and the blend fuels while fuel consumption increasing around 14%, and of much lower emissions of exhaust. When using the diesel fuel mixed with 20-30% of MTD. The conclusion is that MTD is a cheap and clean low power loss additive fuel for diesel engines.  相似文献   

15.
The aims of the present study were to evaluate the cold temperature behavior of methyl esters of vegetable and animal origin and of their mixtures with fossil diesel fuel, as well as to investigate the effectiveness of different depressants. Various blends of rapeseed oil methyl esters, linseed oil methyl esters, pork lard methyl esters and fossil diesel fuel were prepared, and both cloud point and cold filter plugging point (CFPP) were analyzed. It was found that mixtures with CFPP values of –5 °C and lower may contain up to 25% of pork lard methyl esters; whereas the ratio of summer fossil diesel fuel and rapeseed oil methyl esters may vary over a wide range, i.e. such mixtures can be used in a diesel engine in the summer. In the transitory periods it is possible to use up to 20% animal and vegetable ester blends (3 : 7) with winter fossil diesel, whereas only up to 5% of esters can be added to the fuel used in winter. In order to improve the cold properties of rapeseed oil, pork lard and linseed oil methyl ester mixtures, various additives were tested. Depressant Viscoplex 10–35 with an optimal dose of 5000 mg/kg was found to be the most effective.  相似文献   

16.
The possibility of the effective catalytic synthesis of methanol from nitrogen-ballasted syngas was studied. Syngas was obtained during the operation of power machines such as diesel engines or gas turbines. The dependences of CO and CO2 conversion per cycle, the quality of methanol, et cetera on the composition of syngas are characterized. The kinetic dependences of methanol synthesis on G-79-7GL catalyst (Zud Chemie) are described. For nitrogen-ballasted syngas, the dependences of the CO and CO2 conversion and the output and quality of methanol on the reaction conditions (pressure, temperature, and gas mixture feed rate) are the same as for nitrogen-free syngas, though the CO conversion declined considerably when the concentration of ballast nitrogen was increased. These studies served as the basis for the creation of energy-independent units for processing hydrocarbon gases into methanol and motor fuels.  相似文献   

17.
Biodiesel is an alternative fuel for diesel engines that consists of the monoalkyl esters of vegetable oils or animal fats. Currently, most biodiesel consists of methyl esters, which have poor cold-flow properties. Methyl esters of soybean oil will crystallize and plug fuel filters and lines at about 0°C. However, isopropyl esters have better cold-flow properties than methyl esters. This paper describes the production of isopropyl esters and their evaluation in a diesel engine. The effects of the alcohol amount, the catalyst amount, and two different catalysts on producing quality biodiesel were studied. Both sodium isopropoxide and potassium isopropoxide were found to be suitable for use in the transesterification process. A 20∶1 alcohol/TG molar ratio and a catalyst amount equal to 1% by weight (based on the TG amount) of sodium metal was the most cost-effective way to produce biodiesel fuel. The emissions from a diesel engine running on isopropyl esters made from soybean oil and yellow grease were investigated by comparing them with No. 2 diesel fuel and methyl esters. For nitrogen oxide emission, the difference between the biodiesel produced from soybean oil and yellow grease was greater than the difference between the methyl and isopropyl esters of both feedstocks. The other emissions from using isopropyl esters were about 50% lower in hydrocarbons, 10–20% lower in carbon monoxide, and 40% lower in smoke number when compared with No. 2 diesel fuel.  相似文献   

18.
The Selective Catalytic Reduction (SCR) of NOx has been performed in a real diesel exhaust stream with commercial diesel fuel by using a full size home-made Pt/beta zeolite/honeycomb prototype catalyst. Fuel was injected upstream of the catalyst to achieve total hydrocarbon concentrations between 1000 and 5000 ppm, and the SCR behavior observed was similar to that typically reported in laboratory experiments performed with model hydrocarbons. Typical NOx removal volcano-shape profiles, with maxima at 250 °C for all THC inlet concentrations, were obtained, with an optimum THC concentration of 3000 ppm.  相似文献   

19.
Jatropha (Jatropha curcas) and soapnut (Sapindus mukorossi) oils are considered potential non-edible oil feedstocks for biodiesel production and present complementary fuel properties. Apparently, the poor oxidation stability of jatropha oil biodiesel and the high cold filter plugging point of soapnut oil biodiesel can be successfully improved to satisfy all biodiesel specifications at an optimum blending ratio. The optimum biodiesel combination was further blended with diesel at various volumetric percentages to evaluate the variations of fuel properties. The biodiesel–diesel blends up to B40 would show the satisfactory fuel properties.  相似文献   

20.
Catalytic pyrolysis of biomass for biofuels production   总被引:3,自引:0,他引:3  
Fast pyrolysis bio-oils currently produced in demonstration and semi-commercial plants have potential as a fuel for stationary power production using boilers or turbines but they require significant modification to become an acceptable transportation fuel. Catalytic upgrading of pyrolysis vapors using zeolites is a potentially promising method for removing oxygen from organic compounds and converting them to hydrocarbons. This work evaluated a set of commercial and laboratory-synthesized catalysts for their hydrocarbon production performance via the pyrolysis/catalytic cracking route. Three types of biomass feedstocks; cellulose, lignin, and wood were pyrolyzed (batch experiments) in quartz boats in physical contact with the catalysts at temperature ranging from 400 °C to 600 °C and catalyst-to-biomass ratios of 5-10 by weight. Molecular-beam mass spectrometry (MBMS) was used to analyze the product vapor and gas composition. The highest yield of hydrocarbons (approximately 16 wt.%, including 3.5 wt.% of toluene) was achieved using nickel, cobalt, iron, and gallium-substituted ZSM-5. Tests performed using a semi-continuous flow reactor allowed us to observe the change in the composition of the volatiles produced by the pyrolysis/catalytic vapor cracking reactions as a function of the catalyst time-on-stream. The deoxygenation activity decreased with time because of coke deposits formed on the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号