首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper first describes the current state of analysis for the response of unreinforced concrete masonry walls subjected to lateral uniform pressure. The formulation is based on the initial elastic response, the subsequent initiation of cracks and the nonlinear rocking response, and the eventual large displacement and potential collapse. The necessary equations are developed for these phases in the form of a resistance function. The paper then incorporates membrane retrofit materials to strengthen the wall’s resistance to lateral pressure, and develops the necessary resistance function equations. In blast tests, membrane retrofit unreinforced masonry walls have experienced severe cracking and large displacements without collapse. This is of high interest to the Department of Defense, the protection of diplomatic facilities, and the construction industry impacted by hurricanes and other high wind events. The paper concludes with examples that demonstrate application of membrane retrofits indeed increase the resistance of the wall to lateral pressure.  相似文献   

2.
The most widely used terrorist tactic is the improvised explosive device, which can range in size from hand-held to truck-size. Most casualties and injuries sustained in such an attack are not caused by the blast itself, but rather by the disintegration and fragmentation of walls, the shattering of windows, and by nonsecured objects propelled at high velocities by the blast. Since 1995, the Air Force Research Laboratory at Tyndall Air Force Base has investigated methods of retrofitting wall structures to better resist blast loads from external explosions. This paper summarizes results from recent tests that involve an innovative use of a sprayed-on polymer to increase blast resistance of unreinforced concrete masonry walls. Test methodology, retrofit materials considered, material properties, mechanisms of effectiveness, and research challenges are discussed.  相似文献   

3.
In spite of our understanding and knowledge of the properties of concrete masonry as a material, shrinkage continues to be a problem affecting the performance of concrete masonry walls. A case study is presented which suggests that the behavior of concrete masonry walls subjected to the shrinkage of units is not completely understood. The paper discusses causes in material standards, design specifications, manufacture and construction practice which may contribute to shrinkage cracking of concrete masonry walls.  相似文献   

4.
A full-scale blast test was conducted on eight masonry walls reinforced with two and four layers of carbon fibers and two types of polymer matrices. The walls were then subjected to a 0.45-kg pentolite booster suspended from the ceiling of a test structure. The pressure-time history caused by the blast and the resulting displacement response were measured during the test. This paper presents a summary of the test program and the corresponding results from a nonlinear single degree of freedom analysis. The results provide a basis for determining effective means of retrofitting existing masonry walls and designing new structures to withstand blast loads. The paper also outlines a fiber-reinforced polymer retrofit design procedure for walls subjected to blast loading.  相似文献   

5.
Recent earthquakes have produced extensive damage in a large number of existing masonry buildings, demonstrating the need for retrofitting masonry structures. Externally bonded carbon fiber is a retrofitting technique that has been used to increase the strength of reinforced concrete elements. Sixteen full-scale shear dominant clay brick masonry walls, six with wire-steel shear reinforcement, were retrofitted with two configurations of externally bonded carbon fiber strips and subjected to shear loading. The results of the experimental program showed that the strength of the walls could be increased 13–84%, whereas, their displacement capacity increased 51–146%. This paper presents an analysis of the experimental results and simple equations to estimate the cracking load and the maximum shear strength of clay brick masonry walls, retrofitted with carbon fiber.  相似文献   

6.
The exterior walls of conventional structures are often constructed using concrete masonry units (CMUs), commonly called concrete blocks. A series of experiments was conducted at the U.S. Army Engineer Research and Development Center to determine the response of a one-way ?-scale CMU wall to the detonation of an explosive charge. Finite-element analyses were developed to predict the results of these experiments. Each CMU was modeled with eight-node continuum elements. Adjacent CMUs were tied together using a slide surface that models a rigid connection until a failure criterion is met. Based on the analyses, a charge standoff was selected to induce a near-failure response. Five blast-load experiments were conducted. Both pre- and posttest analyses compare reasonably well with experimental results.  相似文献   

7.
Strengthening of Infill Masonry Walls with FRP Materials   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of different externally bonded glass fiber–reinforced polymer (GFRP) systems for increasing the out-of-plane resistance of infill masonry walls to loading. The research included a comprehensive experimental program comprising 14 full-scale specimens, including four unstrengthened (control) specimens and 10 strengthened specimens. To simulate the boundary conditions of infill walls, all specimens consisted of a reinforced concrete (RC) frame, simulating the supporting RC elements of a building superstructure, which was infilled with solid concrete brick masonry. The specimens were loaded out-of-plane using uniformly distributed pressure to simulate the differential (suction) pressure induced by a tornado. Parameters investigated in the experimental program included aspect ratio, FRP coverage ratio, number of masonry wythes, and type of FRP anchorage. Test results indicated that the type of FRP anchorage had a significant effect on the failure mode. Research findings concluded that GFRP strengthening of infill masonry walls is effective in increasing the out-of-plane load-carrying capacity when proper anchorage of the FRP laminate is provided.  相似文献   

8.
Concrete masonry unit walls subjected to blast pressure were analyzed with the finite element method, with the goal of developing a computationally efficient and accurate model. Wall behavior can be grouped into three modes of failure, which correspond to three ranges of blast pressures. Computational results were compared to high-speed video images and debris velocities obtained from experimental data. A parametric analysis was conducted to determine the sensitivity of computed results to critical modeling values. It was found that the model has the ability to replicate experimental results with good agreement. However, it was also found that, without knowledge of actual material properties of the specific wall to be modeled, computational results are not reliable predictors of wall behavior.  相似文献   

9.
Research reported herein investigates the out-of-plane impact resistance of unreinforced masonry (URM) walls strengthened with carbon fiber-reinforced polymer (CFRP) composites, externally applied in sheets to one face of the wall. Two analytical methods based on energy principle and wave propagation theory and a finite-element-based numerical model have been developed, assuming a perfect bond at composite–masonry interface with an equivalent stiffness of the system. Full-scale impact tests are conducted for verification purpose, where three 1.2?m tall URM concrete walls (one unstrengthened and two strengthened with continuous unidirectional and woven CFRP sheets) are vertically tested up to cracking using a pendulum drop-weight impact tester. The test results compare reasonably well with those obtained from the analyses and simulation. It is found that the energy and finite-element methods can provide reasonable estimates for peak impact force and wall deflection, whereas the wave propagation method is rather limited by its applicability. Parametric studies are conducted to examine the effect of impactor mass, velocity, amount of CFRP reinforcement, and property of masonry material using the developed models.  相似文献   

10.
Six full-scale concrete masonry walls were tested under free-field blast loading using different charge sizes up to 250?kg of ammonium nitrate/fuel oil (ANFO) and at a constant stand-off distance of 15.0?m to cover a wide range of expected damage levels. Five walls were retrofitted with cold-formed steel studs anchored to the wall backs and were compared to the remaining as-built wall. Significant enhancement to the out-of-plane blast resistance of the retrofitted walls, compared to the as-built wall, was observed. This enhancement is attributed to the development of a tied-arch action in the retrofitted walls in which the masonry forms a compression strut while the steel studs serve as the tie. A simplified single-degree-of-freedom model was used to analyze the experimental results, and the model results agreed well with the observed damage levels and the resistances of the walls. In addition, the effectiveness of the proposed retrofit technique was evaluated in terms of strength enhancement and wall deflection reduction. The test results were also compared with those predicted by available blast damage assessment models for unreinforced masonry walls. However, it was found that available models, which do not account for the tied-arch mechanism, greatly underestimate the actual blast capacity of the retrofitted walls because of the assumption of a tensile flexural failure mode. Additionally, the proposed retrofit technique shifts the mode of failure from flexure to shear.  相似文献   

11.
The structural behavior of masonry walls laterally strengthened with externally bonded composite materials to resist out-of-plane loads is theoretically and experimentally studied. Hollow concrete block masonry walls and solid autoclaved aerated concrete (AAC) block masonry walls are examined. A theoretical model that accounts for the cracking and the physical nonlinear behavior, the debonding of the composite layers, the arching effect, the interfacial stresses, and the unique modeling aspects of the laterally strengthened wall is presented. The experimental study includes loading to failure of 4 laterally strengthened masonry walls and 2 control walls. The experimental and analytical results point at the unique aspects of the lateral strengthening of masonry walls with composite materials. In particular, they reveal and explain the premature shear failure in laterally strengthened hollow concrete blocks walls and, on the other hand, demonstrate the potential of lateral fiber-reinforced polymer strengthening of AAC masonry walls. The laterally strengthened AAC masonry walls reveal improved strength, deformability, and integrity at failure characteristics.  相似文献   

12.
Impact tests using drop-weight pendulum on nine 1.2-m-high full-scale concrete masonry block walls were conducted to investigate the out-of-plane impact behavior of unreinforced masonry (URM) walls externally strengthened with carbon-fiber-reinforced polymer (CFRP) composites. Three strengthening schemes on one side of the wall were studied: continuous unidirectional and continuous woven sheets, discrete strips in a vertical pattern, and discrete strips in orthogonal and diagonal patterns. All walls were vertically positioned resting on a knife-edge support with one face leaning against two steel rollers close to the upper and lower edges of the wall. The impact load was applied at the wall center through a drop-weight pendulum impact tester with various drop heights. Test results revealed that using composite laminates or strips could significantly improve the impact performance of URM walls. The wall strengthened with continuous woven sheets performed better than the one with unidirectional sheet. With the same amount of fiber-reinforced polymer strip material, the wall with narrower but more closely spaced strips performed slightly better than the one with wider strips.  相似文献   

13.
The objective of this paper is to assess the out-of-plane flexural performance of masonry walls that are reinforced with glass fiber-reinforced polymers (GFRPs) rods, as an alternative for steel rebars. Eight 1?m×3?m full-scale walls were constructed using hollow concrete masonry units and tested in four-point bending with an effective span of 2.4 m between the supports. The walls were tested when subjected to increasing monotonic loads up to failure. The applied loads would represent out-of-plane loads arising from wind, soil pressure, or inertia force during earthquakes. One wall is unreinforced; another wall is reinforced with customary steel rebars; and the other six walls are reinforced with different amounts of GFRP reinforcement. Two of the GFRP-reinforced walls were grouted only in the cells where the rods were placed to investigate the effect of grouting the empty cells. The force-deformation relationship of the walls and the associated strains in the reinforcement were monitored throughout the tests. The relative performance of different walls is assessed to quantify the effect of different design variables. The range of GFRP reinforcement ratios covered in the experiments was used to propose a capacity diagram for the design of FRP-reinforced masonry walls similar to that of reinforced concrete elements.  相似文献   

14.
Previous experimental studies, conducted by some of the authors, on in-plane response of tuff masonry walls strengthened with an innovative cementitious matrix composite grid (CMG) system confirmed that the CMG system could satisfy basic design requirements such as compatibility with the tuff masonry support (i.e., in terms of good bond properties), reversibility of the intervention and strengthening effectiveness. However, very large scatter was found in the experimental outcomes. Micromodeling and some parametric analyses were adopted to understand the contribution of basic material (mortar, tuff blocks and CMG strengthening) and the effect of the workmanship defects on the structural behavior of a natural stone wall. In order to conduct the analyses, finite-element method models of the elements have been compared to experimental data and they were found to be in good agreement with the test data. Significant improvements of strength and in the postpeak response were achieved installing different layouts of the CMG system. However the strengthening intervention had a negligible influence on the initial stiffness of the walls and this means that it has a reduced impact on the behavior of the existing structure.  相似文献   

15.
Recent earthquakes have shown the vulnerability of unreinforced masonry (URM) buildings, which have led to an increasing demand for techniques to upgrade URM buildings. Fiber reinforced polymer (FRP) can provide an upgrading alternative for URM buildings. This paper presents results of dynamic tests investigating the in-plane behavior of URM walls upgraded with FRP (URM-FRP). These tests represent pioneer work in this area (dynamic and in-plane). Five half-scale walls were built, using half-scale brick clay units, and upgraded on one face only. Two moment/shear ratios (1.4 and 0.7), two mortar types (M2.5 and M9), three composite materials (carbon, aramid, and glass), three fiber structures (plates, loose fabric, and grids), and two upgrading configurations (diagonal “X” and full surface shapes) were investigated. The test specimens were subjected to a series of synthetic earthquake motions with increasing intensities on a uniaxial earthquake simulator. The tests validate the effectiveness of the one side upgrading: the upgrading technique improved the lateral resistance of the URM walls by a factor ranging from 1.3 to 2.9; however, the improvement in the lateral drift was less significant. Moreover, no uneven response was observed during the test due to the single side upgrading. Regarding the upgrading configurations, the bidirectional surface type materials (fabrics and grids) applied on the entire surface of the wall (and correctly anchored) can help postpone the three classic failure modes of masonry walls: rocking (“flexural failure”), step cracking, and sliding (“shear failures”). Additionally, in some situations, they will postpone collapse by “keeping the bricks together” under large seismic deformations. On the other hand, the diagonal “X” shape was less successful and premature failure was developed during the test.  相似文献   

16.
Collapse of unreinforced masonry (URM) walls is the cause of many casualties during extreme loading events. The objective of this current research was to investigate effective and practical approaches for strengthening URM block walls with openings to resist extreme out-of-plane loads. Five full-scale masonry block walls were constructed. The walls had different opening configurations such as a single center window, one window off center, two windows, a wide window and a door. The walls were tested when subjected to uniformly distributed lateral load up to failure. The walls were then strengthened using carbon fiber-reinforced polymer laminate strips and then retested. The walls were set up in a vertical test frame and were subjected to cyclic out-of-plane distributed pressure using an airbag. Failure of the unstrengthened URM block wall was along the mortar joints. In the strengthened walls, failure occurred in the mortar joints as well as in concrete blocks near the carbon strips. The lateral load carrying capacity of the strengthened walls was found to be significantly higher than that of the unstrengthened walls and had much more ductile performance.  相似文献   

17.
After an investigation on the most recent floods occurred in Italy that damaged the Cultural Heritage masonry buildings, an experimental research started on-site on full-scale masonry models exposed to the environmental agents in Milan. The masonry materials used for the full-scale models were largely investigated in the past and the models were subjected to decay caused by the capillary rise and by the crystallization of sodium sulfate coming from the foundations. These walls can actually simulate the state of naturally contaminated walls before a flood and represent a construction where the main parameters are known. A flood has been simulated by adding water for several days to the walls of the full-scale models previously contaminated by salts, then the walls were left to naturally dry. The objective is to check the effectiveness of nondestructive (ND) techniques in detecting the presence of water and the drying process and also the influence of surface treatments presence. Radar tests, thermography tests, sonic tests, as well as the minor destructive powder drilling tests were applied successfully to evaluate the moisture distribution in the masonry after flooding and during natural drying.  相似文献   

18.
Presented herein are the details and results of an experimental study conducted to evaluate the performance of a proposed infill wall fuse system. The purpose of this system, referred to as the seismic infill wall isolator subframe (SIWIS) system, is to prevent damage to columns or infill walls due to infill-frame interaction through a “sacrificial” component or a “structural fuse.” The SIWIS system conceptually consists of two vertical and one horizontal sandwiched light-gauge steel studs with SIWIS elements in the vertical members. The experimental study presented here involves the in-plane lateral load testing of a two-bay three-story steel frame in three forms of bare frame, infilled braced frame, and pinned frame equipped with the proposed SIWIS device. In addition, a brick wall in-plane strength test and a series of component tests on three different designs for fuse element were conducted. In the conducted tests, the suggested technique initially engages the infill walls in seismic resistance of the frame, but ultimately isolates them. It is concluded, thus, that the proposed fuse system has the potential for the development of an effective way to reduce earthquake damage in framed buildings with infill walls.  相似文献   

19.
Masonry structures have demonstrated their seismic vulnerability during recent world seismic events. This paper investigates in-plane seismic performance of unreinforced masonry (URM) walls before and after they are retrofit using fiber-reinforced polymer (FRP) materials. An assessment of available design formulas for evaluating both the in-plane performance of URM walls and the contribution of FRP strengthening systems was performed. Walls with two configurations of the FRP reinforcement have been analyzed: one based on FRP strips installed parallel to the mortar joints, the other characterized by FRP strips arranged along the diagonals of the wall. Based on shear–compression tests carried out on FRP-strengthened masonry walls available in the literature, a comparison between theoretical and experimental data is performed. A discussion about the FRP strains at failure of the walls is provided and values of effective FRP strains to be used for design purposes are proposed.  相似文献   

20.
In this study, a new technique for detecting ungrouted cells in concrete block masonry constructions was developed. The concept, based on detecting the local dielectric permittivity variations, was employed to design coplanar capacitance sensors with high sensitivities to detect such construction defects. An analytical model and finite element simulations were used to assess the influence of the sensor geometrical parameters on the sensor signals and to optimize the sensor design. To experimentally verify the model, the dielectric properties of various materials involved in concrete masonry walls were measured. In addition, a masonry wall containing predetermined grouted and ungrouted cells was constructed and inspected using the developed sensors in a laboratory setting. Moreover, different capacitance sensors were designed and compared with respect to their sensitivity, signal-to-noise ratio, and coefficient of variation of the inspected measurements. Excellent agreements were found between the experimental capacitance signal response parameters and those predicted by the analytical and finite element models. The proposed sensor design, coupled with a commercially available portable capacitance meter, would facilitate employing this technique in the field for rapid inspection of masonry structures without the need for sophisticated data analyses usually required by other more expensive and time consuming methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号