首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-cost analysis is an important element of project scheduling, especially for lengthy and costly construction projects, as it evaluates alternative schedules and establishes an optimum one considering any project completion deadline. Existing methods for time-cost analysis have not adequately considered typical activity and project characteristics, such as generalized precedence relationships between activities, external time constraints, activity planning constraints, and bonuses/penalties for early/delayed project completion that would provide a more realistic representation of actual construction projects. The present work aims to incorporate such characteristics in the analysis and has developed two solution methods, an exact and an approximate one. The exact method utilizes a linear/integer programming model to provide the optimal project time-cost curve and the minimum cost schedule considering all activity time-cost alternatives together. The approximate method performs a progressive project length reduction providing a near-optimal project time-cost curve but it is faster than the exact method as it examines only certain activities at each stage. In addition, it can be easily incorporated in project scheduling software. Evaluation results indicate that both methods can effectively simulate the structure of construction projects, and their application is expected to provide time and cost savings.  相似文献   

2.
A practical model for scheduling and cost optimization of repetitive projects is proposed in this paper. The model objective is to minimize total construction cost comprising direct cost, indirect cost, interruption cost, as well as incentives and liquidated damages. The novelty of this model stems from four main aspects: (1) it is based on full integration of the critical path and the line of balance methodologies, thus considering crew synchronization and work continuity among nonserial activities; (2) it performs time-cost trade-off analysis considering a specified deadline and alternative construction methods with associated time, cost, and crew options; (3) it is developed as a spreadsheet template that is transparent and easy to use; and (4) it utilizes a nontraditional optimization technique, genetic algorithms, to determine the optimum combination of construction methods, number of crews, and interruptions for each repetitive activity. To automate the model, macroprograms were developed to integrate it with commercial scheduling software. Details of the model are presented, and an example project is used to demonstrate its benefits.  相似文献   

3.
This paper presents a multiobjective optimization model for the planning and scheduling of repetitive construction projects. The model enables construction planners to generate and evaluate optimal construction plans that minimize project duration and maximize crew work continuity, simultaneously. The computations in the present model are organized in three major modules: scheduling, optimization, and ranking modules. First, the scheduling module uses a resource-driven scheduling algorithm to develop practical schedules for repetitive construction projects. Second, the optimization module utilizes multiobjective genetic algorithms to search for and identify feasible construction plans that establish optimal tradeoffs between project duration and crew work continuity. Third, the ranking module uses multiattribute utility theory to rank the generated plans in order to facilitate the selection and execution of the best overall plan for the project being considered. An application example is analyzed to illustrate the use of the model demonstrate its new capabilities in optimizing the planning and scheduling of repetitive construction projects.  相似文献   

4.
In this paper, based on the Darwinian and Lamarckian evolution theories, three hybrid genetic programming (GP) algorithms integrated with different local search operators (LSOs) are implemented to improve the search efficiency of the standard GP. These three LSOs are the genetic algorithm, the linear bisection search, and the Hooke and Jeeves method. A simple encoding method is presented to encode the GP individuals into the expressions that can be recognized by the different LSOs. The implemented hybrid GP algorithms are applied to identify the excitation force acting on the structures from the measured structural response, which is an important type of inverse problem in structural dynamics. Illustrative examples of a frame structure and a multistory building structure demonstrate that, compared with the standard GP, the hybrid GP algorithms have higher search efficiency which can be used as alternate global search and optimization tools for other engineering problem solving.  相似文献   

5.
Repetitive scheduling methods are more effective than traditional critical path methods in the planning and scheduling of repetitive construction projects. Nevertheless, almost all the repetitive scheduling methods developed so far have been based on the premise that a repetitive project is comprised of many identical production units. In this research a non-unit-based algorithm for the planning and scheduling of repetitive projects is developed. Instead of repetitive production units, repetitive or similar activity groups are identified and employed for scheduling. The algorithm takes into consideration: (1) the logical relationship of activity groups in a repetitive project; (2) the usage of various resource crews in an activity group; (3) the maintaining of resource continuity; and (4) the time and cost for the routing of resource crews. A sample case study and a case study of a sewer system project are conducted to validate the algorithm, as well as to demonstrate its application. Results and findings are reported.  相似文献   

6.
Inverse problems that are constrained by large-scale partial differential equation (PDE) systems demand very large computational resources. Solutions to these problems generally require the solution of a large number of complex PDE systems. Three-dimensional groundwater inverse problems fall under this category. In this paper, we describe the implementation of a parallel simulation-optimization framework for solving PDE-based inverse problems and demonstrate it for the solution of groundwater contaminant source release history reconstruction problems that are of practical importance. The optimization component employs several optimization algorithms, including genetic algorithms (GAs) and several local search (LS) approaches that can be used in a hybrid mode. This hybrid GA-LS optimizer is used to drive a parallel finite-element (FEM) groundwater forward transport simulator. Parallelism is exploited within the transport simulator (fine grained parallelism) as well as the optimizer (coarse grained parallelism) through the exclusive use of the Message Passing Interface (MPI) communication library. Algorithmic and parallel performance results are presented for an IBM SP3 supercomputer. Simulation and performance results presented in this paper illustrate that an effective combination of efficient optimization algorithms and parallel computing can enable solution to three-dimensional groundwater inverse problems of a size and complexity not attempted before.  相似文献   

7.
In a previous paper in this Journal, a “hybrid method” was proposed for the joint propagation of probability distributions (expressing variability) and possibility distributions (i.e., fuzzy numbers, expressing imprecision or partial ignorance) in the computation of risk. In order to compare the results of the hybrid computation (a random fuzzy set) to a tolerance threshold (a tolerable level of risk), a postprocessing method was proposed. Recent work has highlighted a shortcoming of this postprocessing step which yields overly conservative results. A postprocessing method based on Shafer’s theory of evidence provides a rigorous answer to the problem of comparing a random fuzzy set with a threshold. The principles behind the new postprocessing scheme are presented and illustrated with a synthetic example.  相似文献   

8.
The high variability of construction environments results in high construction-cost variation, especially in material costs. Inadequate planning may cause material shortages that delay the project schedule or, alternatively, a substantial increase in inventory costs by producing or supplying materials earlier than they are needed at the construction site. In order to solve these problems, this paper studies steel rebar production and supply operations and establishes an optimal model that minimizes the integrated inventory cost of the supply chain. Based on the optimal model, this paper develops a decision-support system to generate a production and supply plan for a supplier and buyers of steel rebar. After utilizing the decision-support system to create the supply and production plan, this paper analyzes the results to study the influence of transaction constraints on inventory cost. This paper also discusses cases of global optimization of the inventory cost for the entire supply chain and compares them with cases of local optimization for individual members.  相似文献   

9.
Layout of temporary facilities on a construction site is essential to enhancing productivity and safety, and is a complex issue due to the unique nature of construction. This paper proposes a particle swarm optimization (PSO)-based methodology to solve the construction site unequal-area facility layout problem. A priority-based particle representation of the candidate solutions to the layout problem is proposed. The particle-represented solution in terms of priorities should be transformed to the specific layout plan with consideration of nonoverlap and geometric constraints. In addition, a modified solution space boundary handling approach is proposed for controlling particle updating with regard to the priority value range. Computational experiments are carried out to justify the efficiency of the proposed method and investigate its underlying performances. This study aims at providing an alternative and effective means for solving the construction site unequal-area layout problem by utilizing the PSO algorithm.  相似文献   

10.
Time and cost are related on projects. Project managers are frequently required to make time-cost trade-offs. With the complexity of large projects and the schedule impact of time-cost modifications, decisions on time-cost optimization are usually done on a hit or miss basis. This technical note presents an innovative technique that can be used to automate and optimize the time-cost trade-off process. The technique is based on “maximum flow–minimal cut” theory. The method is an improvement over current practice.  相似文献   

11.
A process for evaluating lunar‐base construction equipment and methods concepts is presented. The process is driven by the need for more quantitative, systematic, and logical methods for assessing further research and development requirements in an area where uncertainties are high, dependence upon terrestrial heuristics is questionable, and quantitative methods are seldom applied. Decision theory concepts are used in determining the value of accurate information and the process is structured as a construction‐equipment‐and‐methods selection methodology. Total construction‐related, earth‐launch mass is the measure of merit chosen for mathematical modeling purposes. The work is based upon the scope of the lunar base as described in the National Aeronautics and Space Administration's Office of Exploration's “Exploration Studies Technical Report, FY 1989 Status.” Nine sets of conceptually designed construction equipment are selected as alternative concepts. It is concluded that the evaluation process is well suited for assisting in the establishment of research agendas in an approach that is first broad, with a low level of detail, followed by more‐detailed investigations into areas that are identified as critical due to high degrees of uncertainty and sensitivity.  相似文献   

12.
Layout of temporary construction facilities (objects) is an important activity during the planning process of construction projects. The construction area layout is a complex problem whose solution requires the use of analytical models. Existing popular models employ genetic algorithms that have proven to be useful tools in generating near optimal site layouts. This paper presents an alternative approach based on mathematical optimization that offers several important features and generates a global optimal solution. The construction area consists of an unavailable area that includes existing facilities (sites) and available area in which the objects can be located. The available area is divided into regions that are formulated using binary variables. The locations of the objects are determined by optimizing an objective function subject to a variety of physical and functional constraints. The objective function minimizes the total weighted distance between the objects and the sites as well as among the objects (if desired). The distance can be expressed as Euclidean or Manhattan distance. Constraints that ensure objects do not overlap are developed. The new approach, which considers a continuous space in locating the objects simultaneously, offers such capabilities as accommodating object adjacency constraints, facility proximity constraints, object–region constraints, flexible orientation of objects, visibility constraints, and nonrectangular objects, regions, and construction areas. Application of the model is illustrated using two examples involving single and multiple objects. The proposed model is efficient and easy to apply, and as such should be of interest to construction engineers and practitioners.  相似文献   

13.
Hybrid Approach for Addressing Uncertainty in Risk Assessments   总被引:3,自引:0,他引:3  
Parameter uncertainty is a major aspect of the model-based estimation of the risk of human exposure to pollutants. The Monte Carlo method, which applies probability theory to address model parameter uncertainty, relies on a statistical representation of available information. In recent years, other uncertainty theories have been proposed as alternative approaches to address model parameter uncertainty in situations where available information is insufficient to identify statistically representative probability distributions, due in particular to data scarcity. The simplest such theory is possibility theory, which uses so-called fuzzy numbers to represent model parameter uncertainty. In practice, it may occur that certain model parameters can be reasonably represented by probability distributions, because there are sufficient data available to substantiate such distributions by statistical analysis, while others are better represented by fuzzy numbers (due to data scarcity). The question then arises as to how these two modes of representation of model parameter uncertainty can be combined for the purpose of estimating the risk of exposure. This paper proposes an approach (termed a hybrid approach) which combines Monte Carlo random sampling of probability distribution functions with fuzzy calculus. The approach is applied to a real case of estimation of human exposure, via vegetable consumption, to cadmium present in the surficial soils of an industrial site located in the north of France. The application illustrates the potential of the proposed approach, which allows the uncertainty affecting model parameters to be represented in a way that is consistent with the information at hand. Also, because the hybrid approach takes advantage of the “rich” information provided by probability distributions, while retaining the conservative character of fuzzy calculus, it is believed to hold value in terms of a “reasonable” application of the precautionary principle.  相似文献   

14.
Much of the project scheduling literature treats task durations as deterministic. In reality, however, task durations are subject to considerable uncertainty, and that uncertainty can be influenced by the resources assigned. The purpose of this paper is to provide the means for contractors to optimally allocate their skilled workers among individual tasks for a single project. Instead of the traditional use of schedules, we develop control policies in the form of planned resource allocation to tasks that capture the uncertainty associated with task durations and the impact of resource allocation on those durations. We develop a solution procedure for the model and illustrate the ideas in an example. The data for the example is collected from a real project.  相似文献   

15.
A significant number of large-scale civil infrastructure projects experience cost overruns and schedule delays. To minimize these disastrous consequences, management actions need to be carefully examined at both the strategic and operational levels, as their effectiveness is mainly dependent on how well strategic perspectives and operational details of a project are balanced. However, current construction project management approaches have treated the strategic and operational issues separately, and consequently introduced a potential conflict between strategic and operational analyses. To address this issue, a hybrid simulation model is presented in this paper. This hybrid model combines system dynamics and discrete event simulation which have mainly been utilized to analyze the strategic and operational issues in isolation, respectively. As an application example, a nontypical repetitive earthmoving process is selected and simulated. The simulation results demonstrate that a systematic integration of strategic perspective and operational details is helpful to enhance the process performance by enabling construction managers to identify potential process improvement areas that traditional approaches may miss. Based on the simulation results, it is concluded that the proposed hybrid simulation model has great potential to support both the strategic and operational aspects of construction project management and to ultimately help increase project performance.  相似文献   

16.
Construction schedules, generated by network scheduling techniques, often cause undesirable resource fluctuations that are impractical, inefficient, and costly to implement on construction sites. This paper presents the development of two innovative resource leveling metrics to directly measure and minimize the negative impact of resource fluctuations on construction productivity and cost. The first metric quantifies the total amount of resources that need to be temporarily released during low demand periods and rehired at a later stage during high demand periods. The second measures the total number of idle and nonproductive resource days that are caused by undesirable resource fluctuations. The two new metrics are incorporated in a robust and practical optimization model that is capable of generating optimal and practical schedules that maximize the efficiency of resource utilization. An application example is analyzed to illustrate the use of the model and demonstrate its capabilities. The results of this analysis show that the present model and metrics are capable of outperforming existing metrics and eliminating undesirable resource fluctuations and resource idle time.  相似文献   

17.
Large scale earthmoving operations require the use of heavy and costly construction equipment. Optimum utilization of equipment is a crucial task for the project management team. It can result in substantial savings in both time and cost of earthmoving operations. This paper presents optimization model for earthmoving operations in heavy civil engineering projects. The developed model is designed to assist general contractor in optimizing planning of earthmoving operations. The model utilizes genetic algorithm, linear programming, and geographic information systems to support its management functions. The model assists in planning earthmoving operations; taking into consideration: (1) availability of resources to contractors; (2) project budget and/or time constraints, if any; (3) scope of work; (4) construction site conditions; (5) soil type; (6) project indirect cost; and (7) equipment characteristics. The model also determines the quantities of earth to be moved from different borrow pits and those to be placed at different landfill sites to meet optimization objective set by the user and to meet project constraints. The model has been implemented in prototype software, using object-oriented programming. Two numerical example projects are presented to validate and demonstrate the use of the developed model in optimizing earthmoving operations.  相似文献   

18.
The present study develops a new optimization algorithm to find the complete time-cost profile (Pareto front) over a set of feasible project durations, i.e., it solves the time-cost trade-off problem. To improve existing methods, the proposed algorithm aims to achieve three goals: (1) to obtain the entire Pareto front in a single run; (2) to be insensitive to the scales of time and cost; and (3) to treat all existing types of activity time-cost functions, such as linear, nonlinear, discrete, discontinuous, and a hybrid of the above. The proposed algorithm modifies a population-based search procedure, particle swarm optimization, by adopting an elite archiving scheme to store nondominated solutions and by aptly using members of the archive to direct further search. Through a fast food outlet example, the proposed algorithm is shown effective and efficient in conducting advanced bicriterion time-cost analysis. Future applications of the proposed algorithm are suggested in the conclusion.  相似文献   

19.
Reducing both project cost and time (duration) is critical in a competitive environment. However, a trade-off between project time and cost is required. This in turn requires contracting organizations to carefully evaluate various approaches to attaining an optimal time-cost equilibrium. Although several analytical models have been developed for time-cost optimization (TCO), they mainly focus on projects where the contract duration is fixed. The optimization objective in those cases is therefore restricted to identifying the minimum total cost only. With the increasing popularity of alternative project delivery systems, clients and contractors are targeting the increased benefits and opportunities of seeking an earlier project completion. The multiobjective model for TCO proposed in this paper is powered by techniques using genetic algorithms (GAs). The proposed model integrates the adaptive weights derived from previous generations, and induces a search pressure toward an ideal point. The concept of the GA-based multiobjective TCO model is illustrated through a simple manual simulation, and the results indicate that the model could assist decision-makers in concurrently arriving at an optimal project duration and total cost.  相似文献   

20.
The paper presents a hybrid soft computing system for mining of complex construction databases. The proposed approach hybridizes soft computing techniques, such as fuzzy logic, artificial neural networks (ANNs), and messy genetic algorithms (mGAs), to form a novel computational method for mining of human understandable knowledge from historical databases. The hybridization combines the merits of explicit knowledge representation of fuzzy logic decision-making systems, learning abilities of ANNs, and global search of mGAs. A hybrid soft computing system (HSCS) is developed for mining complex databases in construction with three characteristics: scarcity, incompleteness, and uncertainty. Real-world construction data repositories are selected to test the capabilities of the proposed HSCS for data-mining under the above-mentioned complex conditions. The testing results show the promising potential of the proposed HSCS for mining of complex databases in construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号