首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, the load rating is the method used by State DOTs for evaluating the safety and serviceability of existing bridges in the United States. In general, load rating of a bridge is evaluated when a maintenance, improvement work, change in strength of members, or addition of dead load alters the condition or capacity of the structure. The AASHTO LRFD specifications provide code provisions for prescribing an acceptable and uniform safety level for the design of bridge components. Once a bridge is designed and placed in service, the AASHTO Manual for Condition Evaluation of Bridges provides provisions for determination of the safety and serviceability of existing bridge components. Rating for the bridge system is taken as the minimum of the component ratings. If viewed from a broad perspective, methods used in the state-of-the-practice condition evaluation of bridges at discrete time intervals and in the state-of-the-art probability-based life prediction share common goals and principles. This paper briefly describes a study conducted on the rating and system reliability-based lifetime evaluation of a number of existing bridges within a bridge network, including prestressed concrete, reinforced concrete, steel rolled beam, and steel plate girder bridges. The approach is explained using a representative prestressed concrete girder bridge. Emphasis is placed on the interaction between rating and reliability results in order to relate the developed approach to current practice in bridge rating and evaluation. The results presented provide a sound basis for further improvement of bridge management systems based on system performance requirements.  相似文献   

2.
To investigate the natural frequency of a railway girder bridge under vehicle loads, two methods are presented. First, the natural frequency of a railway girder bridge under vehicle loads is obtained by solution of the eigenvalue of the vehicle-bridge interaction equation at each step of the numerical integration. Second, based on the vehicle-bridge interaction equation, an approximate formula is developed. The results show that the natural frequency of a railway girder bridge under vehicle loads varies periodically as the vehicles pass over the bridge. The results obtained with the two methods are then compared, showing that a good agreement is achieved. From parametric studies, the effects of the unsprung mass, the sprung mass, and the stiffness of the vehicle suspension are discussed.  相似文献   

3.
Often, to restrain the lateral displacement of elastomeric bearings in slab-girder bridges, two retainers in the form of angles or welded plates are placed on each side of the bearings, with a slight clearance to allow for longitudinal movement of the elastomer. The existence of the gap introduces nonlinearity into the seismic analysis of the structure, which is commonly ignored. In addition, by considering the gap, the elastomer’s stiffness in the transverse direction contributes to the overall stiffness of the system. This paper investigates the behavior of these retainers under earthquake forces. The retainers’ stiffness, the gap distance, and the period of the bridge are used as variable parameters. It is shown that the seismic demand on retainers is nonlinear in nature and depends on the frequency content of the input motion. It is also proved that ignoring the gap in the seismic analysis model can lead to lower seismic demands on the retainers and substructure. Design recommendations are given for bridges with such retainers.  相似文献   

4.
Elastomeric expansion bearings are often restrained laterally by retainers on each side. The retainers are in the form of a concrete shear block, rolled steel angles, or welded plates. To allow for longitudinal temperature movements, the retainers are placed with a slight clearance (gap) from the elastomer. The gap introduces nonlinearity in the seismic analysis of the bridge and, therefore, is often ignored by designers for the sake of simplicity. This paper compares the seismic response of straight and skewed slab-girder single-span bridges under the conditions of zero gap and standard gap for the retainers. Nonlinear time-history analysis is employed to measure the seismic demand on retainers, elastomers, and pinned bearings in each case. The stiffness of end-diaphragms and elastomeric bearings is included in the analysis. It is shown that these relationships are nonlinear in nature and depend on the frequency content of the input motion. It is also proved that ignoring the nonlinearity in the seismic bridge model can lead to erroneous results that are unsafe to use.  相似文献   

5.
A nationwide survey revealed 14 states having bridges comprised of precast, nonprestressed, concrete channel beams. Currently, the Arkansas State Highway and Transportation Department (AHTD) bridge inventory includes approximately 389 in-service bridges using 5.79?m precast channel beams that were constructed using 1952 AHTD bridge details. Results from a statewide inspection of these bridges conducted by the writers revealed bridges with extensive concrete longitudinal cracking at the flexural reinforcing steel level and exposed reinforcing steel. Approximately 2,000 beams in 95 precast concrete channel beam bridges were inspected during a statewide investigation; longitudinal cracking at the reinforcing steel level was observed in 60.4% of the beams and exposed flexural reinforcement in 21.2%. A combination of flexure cracking from the live-load overloads and the presence of moisture has led to this high level of beam deterioration. The source of this moisture is humidity and water seepage at joints between adjacent beams. This paper examines the causes of longitudinal cracking deterioration by examining the influences of water permeation and humidity on the corrosion of flexural reinforcement in precast concrete channel beams.  相似文献   

6.
Safety of a highway infrastructure system depends very much on the proper maintenance of bridges. The level of required maintenance is, typically, determined through a series of regular field inspections with the guidance of safety–economy trade-off. In Turkey, bridge maintenance, repair, and rehabilitation are currently performed on an as-needed basis. Time-dependent reliability analysis cannot be utilized for Turkish bridges for the time being since the majority of the bridges are either not regularly inspected or not inspected at all. The purpose of this paper is to propose a simple method to assess the remaining service life of a bridge by defining a relationship between its current condition rating and its age by evaluating a set of bridges at different ages. In a case study, 28 bridges were inspected for the first time to assess the average life expectancy. The average life of a bridge was predicted to be 80?years, and for this set of bridges, the main body components were found to deteriorate more than earth retaining and serviceability components.  相似文献   

7.
Crumb rubber media have been beneficially invented for ballast water and tertiary wastewater treatment. There is a critical need for precise prediction of clean-bed head loss for engineering design purposes. Pilot crumb rubber filters were tested to study their clean-bed head loss under the influences of three design and operational parameters (media size, media depth, and filtration rate). Data from the filtration tests were used to evaluate the application of the Kozeny and Ergun equations in crumb rubber filters and to develop a statistical model for examination of the effects of each parameter and for clean-bed head loss prediction. Results showed that both the Kozeny and Ergun equations had limitations for crumb rubber filters, especially when the data of compressed media depth were unavailable from the filtration tests. The statistical model developed by the multiplicative power-law relationship was proved to be valid, and it could be used to predict clean-bed head loss in crumb rubber filters.  相似文献   

8.
The majority of all built movable bridges can be grouped into one of the following three structural systems: Bascule bridges, swing bridges, and lift bridges. Many examples for each of these three types of bridges exist and have been documented in the existing literature. The kinematics of these three traditional bridge systems are simple at first sight but nevertheless are important for conceptual design and calculation. Moreover, some recently built or proposed movable pedestrian bridges in Europe differ distinctly from the three aforementioned traditional types of movable bridges. A range of these new ideas is presented here in the context of their kinematic behavior. The writers believe that the understanding of kinematic principles, which are applied regularly in other engineering disciplines, will assist with the development of further new ideas for movable bridges. This paper endeavours to present some such principles and illustrate the application to the given topic.  相似文献   

9.
Accurate predictive analyses such as those associated with structural reliability and life-cycle costing are needed for the development of Bridge Management Systems. The present paper presents models for reliability and life-cycle cost analyses of reinforced concrete bridges damaged by corrosion. A stochastic deterioration process for corrosion initiation and propagation and then crack initiation and propagation are used to examine the effect of cracking, spalling, and loss of reinforcement area on structural strength and reliability. This will enable expected costs of failure for serviceability and ultimate strength limit states to be calculated and compared for different repair strategies and inspection intervals. It was found that, for a typical reinforced concrete slab bridge, the reduction of structural capacity at the time of severe cracking or spalling is relatively modest and causes probabilities of collapse conditional on spalling to increase by about an order of magnitude. Hence, expected costs of failure for serviceability were significantly higher than the expected costs of failure for ultimate strength limit states.  相似文献   

10.
The paper addresses a model, a framework, and an implemented system for supporting design activities where the use of case-based reasoning may reveal particular appropriateness. In the proposed environment, special attention is given to the synthesis of solutions by means of adaptation. A pragmatic combination of a number of artificial intelligence (AI) techniques, considering case-based reasoning (CBR) as the framing concept, enables the implementation of a system that conveniently supports most designers’ cognitive needs. The design of highway bridges was the chosen domain of discourse, for it represents an excellent example for demonstrating the potential of analogy in design. Thus, a large base of real cases is built. The induction of new knowledge is performed by extraction, association, and regression processes. Finally, a real context is used to illustrate the use of the model and to demonstrate its utility and capabilities in supporting designers’ decisions, particularly on the synthesis—i.e., adaptation—of solutions.  相似文献   

11.
Tendon corrosion and the leakage of water through the grouting voids are important contributors to the degradation of prestressed concrete (PC) bridges. Therefore, leakage inspections are beneficial in determining whether a tendon is corroding. This work addresses the inspection of duct leakages on PC bridges using a special multiple neutron source method. This approach is based on the principle of elastic collision between fast neutrons and hydrogen atoms during the emergence of thermalization. Multiple neutron sources should be combined with multiple detectors and an appropriately extended detection time. The probability of capturing thermal neutrons can thus be increased to inspect PC duct leakage. An equation was derived from a combination of theoretical studies and experimental outcomes as a reference for properly selecting the numbers of neutron sources and detectors as well as the detection time. The experimental results show that this approach increases the detection depth of leakage within concrete.  相似文献   

12.
Existing models for isolation bearings neglect certain aspects of their response behavior. For instance, rubber bearings have been observed to decrease in stiffness with increasing axial load, and soften in the vertical direction at large lateral deformations. The yield strength of lead–rubber bearings has also been observed to vary with axial load, such that a lightly loaded bearing may not achieve its theoretical strength. Models that include these axial-load effects in lead–rubber bearings are developed by extending an existing linear two-spring model to include nonlinear behavior. The nonlinearity includes an empirical equation for the experimentally observed variation of yield strength. For numerical implementation, the bearing forces are found by solving the nonlinear equilibrium and kinematic equations using Newton’s method, and the instantaneous bearing stiffness matrix is formed from the differentials of these equations. The response behavior of the models is confirmed by comparison with experimental data.  相似文献   

13.
A new highway system is being constructed in Chile including many bridges. Due to the high seismic risk in the country, high damping rubber bearings, friction bearings, and passive energy dissipation devices have been considered in the design of the majority of the new moderate and large span bridges. Their design follows American Association of State Highway guidelines and technical specifications from the Chilean Ministry of Public Works. Experimental and analytical studies have been performed in three of these structures: (1) a 383 m long continuous beam bridge supported on high damping rubber bearings; (2) a 268 m long continuous beam bridge supported on friction bearing with additional viscous dampers; and (3) a five-span simply supported beam bridge resting on neoprene bearings. Predominant periods and damping characteristics for small amplitude vibrations have been determined from output-only nonparametric analyses. Comparison with standard analytical structural models indicates that the models normally used for analysis yield comparable predominant periods and mode shapes but the damping values typically recommended are larger than the ones observed from ambient vibrations, even when additional energy dissipation elements are present.  相似文献   

14.
The study concerns bridge collapses focusing on metal structures. It is based on literature and news research, due to the lack of extensive compendiums of this unpleasing but important topic. At first, a short overview of the occidental history of metal bridges is given presenting the historic context for the described incidents. It is followed by a classification of the most common causes of bridge failure, which include structural and design deficiencies, corrosion, construction and supervision mistakes, accidental overload and impact, scour, lack of maintenance or inspection, and force majeure. Some significant historic examples are described. Changes and investigations initiated by the described cases are also mentioned. The work concludes that without the disaster that represents each bridge collapse, we would have neither the structural behavior knowledge nor the relatively high safety of today.  相似文献   

15.
Stick models are widely employed in the dynamic analysis of bridges when only approximate results are desired or when detailed models are difficult or time-consuming to construct. Although the use of stick models for regular bridges has been validated by various researchers, the application of such models to skew highway bridges continues to present challenges. The conventional single-beam stick model used to represent the bridge deck often fails to capture certain predominant vibration modes that are important in obtaining the true dynamic response of the bridge. In this paper, a refined stick model is proposed for the preliminary dynamic analysis of skew bridges. The model utilizes a dual-beam stick representation of the bridge deck. The validity of the model is established by comparing results obtained from the proposed model with numerical solutions obtained for skew plates and a skew bridge. It is shown that this dual-beam stick model is superior to the conventional single-beam model in estimating the natural vibration frequencies and in predicting the predominant vibration modes of the bridge. Because of its simplicity and relative accuracy, this model is recommended for the preliminary dynamic analysis of skew highway bridges.  相似文献   

16.
Accurate prediction of bridge condition is essential for the planning of maintenance, repair, and rehabilitation. An examination of the assumptions (for example, maintenance independency) of the existing Markovian model reveals possible limitations in its ability to adequately model the procession of deterioration for these purposes. This study uses statistical analysis to identify significant factors influencing the deterioration and develops an application model for estimating the future condition of bridges. Based on data derived from historical maintenance and inspection of concrete decks in Wisconsin, this study identifies 11 significant factors and develops an artificial neural network (ANN) model to predict associated deterioration. An analysis of the application of ANN finds that it performs well when modeling deck deterioration in terms of pattern classification. The developed model has the capacity to accurately predict the condition of bridge decks and therefore provide pertinent information for maintenance planning and decision making at both the project level and the network level.  相似文献   

17.
In design practice, the transverse bending analysis of box-girder bridges is commonly done by modeling the cross section as a frame of unit width with imaginary supports at the web locations. The transverse bending moments obtained from simple frame analysis (SFA) is sometimes increased by a small percentage to accommodate the errors in modeling. In this paper, a large number of simply supported box-girder bridges have been analyzed by both SFA and three-dimensional finite element analysis for different load conditions and wheel contact areas, and the errors in SFA have been studied and quantified. The error is found to vary widely at the web-top flange junction as well as under the load (maximum sagging moment), depending on the eccentricity of loading, the wheel contact dimensions and the web-flange thickness ratio. Accordingly, a set of correction factors to the results of SFA have been proposed, which is expected to be of significant use in design practice. The use of the correction factors is demonstrated by means of two illustrative examples. The scope of the study is limited to the simplest case of a single-cell concrete box-girder bridge (simply supported with end diaphragms) without overhanging flanges.  相似文献   

18.
During the structural analysis of cable-stayed bridges, some specific problems arise that are not common in other types of bridges. One of these problem is the derivation of an optimal sequence for the tensioning of the stay cables. This paper describes a novel solution to this problem, the unit force method. The method takes into account all relevant effects for the design of cable-stayed bridges, including construction sequence, second-order theory, large displacements, cable sag and time-dependent effects, such as creep and shrinkage or relaxation of prestressing tendons. Information about the implementation of this method into a computer program is given, and an example of a practical application of this method concludes this paper. The method is not restricted to the design of cable-stayed bridges and may well be used for other structural applications in the future.  相似文献   

19.
Shear Lag in Box Girder Bridges   总被引:3,自引:0,他引:3  
A finite-segment method for analyzing shear-lag effects in box girders is presented in this paper, with an assumption that the spanwise displacements of the flange plates are described by a third-power parabolic function. The governing differential equations for two generalized displacements are established according to the principle of minimum potential energy. In order to obtain the longitudinal stresses under the shear-lag effect, the element stiffness equations are developed based on the variational principle by taking the homogeneous solutions of the differential equations as the displacement functions of the finite segment. The effect of two major parameters on shear lag is investigated for cantilever and continuous box girders with varying depth under three kinds of loads. It is shown that the height ratio, in addition to the flange width to span length ratio, has a significant influence on the shear lag. The solutions based on the present method are compared with the results of model testing and the finite strip method. The accuracy of the present method is proved to be satisfactory.  相似文献   

20.
Seismic evaluations of typical concrete girder bridges are conducted for both a multispan simply supported and a multispan continuous girder bridge common to the Central and Southeastern United States. These evaluations are performed for an approximate hazard level of 2% in 50?years by performing nonlinear time history analyses on three-dimensional analytical models. The results show significant vulnerabilities in the reinforced concrete columns, the abutments, and also in unseating of the girders. In general, the longitudinal loading of the bridges results in larger demands than the transverse loading. However, the simply supported bridge sustains bearing deformations in the transverse direction which are on the same order as their longitudinal response. These results suggest that both longitudinal and transverse loading are significant and should be considered when performing seismic hazard analyses of these bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号