首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rehabilitation of existing structures with carbon fiber reinforced polymers (CFRP) has been growing in popularity because they offer resistance to corrosion and a high stiffness-to-weight ratio. This paper presents the flexural strengthening of seven reinforced concrete (RC) beams with two FRP systems. Two beams were maintained as unstrengthened control samples. Three of the RC beams were strengthened with CFRP fabrics, whereas the remaining two were strengthened using FRP precured laminates. Glass fiber anchor spikes were applied in one of the CFRP fabric strengthened beams. One of the FRP precured laminate strengthened beams was bonded with epoxy adhesive and the other one was attached by using mechanical fasteners. Five of the beams were tested under fatigue loading for two million cycles. All of the beams survived fatigue testing. The results showed that use of anchor spikes in fabric strengthening increase ultimate strength, and mechanical fasteners can be an alternative to epoxy bonded precured laminate systems.  相似文献   

2.
Retrofitting concrete structures with fiber reinforced polymer (FRP) has today grown to be a widely used method throughout most parts of the world. The main reason for this is that it is possible to obtain a good strengthening effect with a relatively small work effort. It is also possible to carry out strengthening work without changing the appearance or dimensions of the structure. Nevertheless, when strengthening a structure with external FRP, it is often not possible to make full use of the FRP. The reason for this depends mainly on the fact that a strain distribution exists over the section due to dead load or other loads that cannot be removed during strengthening. This implies that steel yielding in the reinforcement may already be occurring in the service limit state or that compressive failure in the concrete is occurring. By prestressing, a higher utilization of the FRP material is made possible. It is extremely important to ensure that, if external prestressing is used, the force is properly transferred to the structure. Most of the research conducted with prestressing carbon fiber reinforced polymer (CFRP) for strengthening has been on surface bonded laminates. However, this paper presents research on prestressed CFRP quadratic rods bonded in sawed grooves in the concrete cover. This method has proven to be an advantageous means of bonding CFRP to concrete, and in comparison to surface bonded laminates, the shear and normal stress between the CFRP and the concrete are more efficiently transferred to the structure. In the presented test, no mechanical device has been used to maintain the prestress during testing, which means that the adhesive must transfer all shear stresses to the concrete. Fifteen beams with a length of 4?m have been tested. The tests show that the prestressed beams exhibited a higher first-crack load as well as a higher steel-yielding load as compared to nonprestressed strengthened beams. The ultimate load at failure was also higher, as compared to nonprestressed beams, but in relation not as large as for the cracking and yielding. In addition, the beams strengthened with prestressed FRP had a smaller midpoint deflection. All strengthened beams failed due to fiber rupture of the FRP.  相似文献   

3.
The advantages of fiber-reinforced polymer (FRP)-strengthening have been shown time and again during the last decade. Several thousand structures retrofitted with FRPs exist worldwide. There are various reasons why the retrofit is needed, but it is not uncommon for the demands on the structure to change with time, as buildings and civil structures usually have a very long life. The structures may have to eventually carry larger loads or fulfill new standards. In extreme cases, a structure may need repair due to an accident or to errors made during the design or construction phases, and must therefore be strengthened before it can be used. Different methods to retrofit with FRPs also exist, such as bonding of plates or sheets, with their use of epoxy as the bonding agent being the commonality. Epoxy provides very good bond to concrete and is durable and resistant to most environments in the building industry. However, epoxy may also create problems in the working environment, needs a minimum application temperature, and creates diffusion-closed surfaces. These drawbacks can be overcome if the epoxy can be replaced with a cementitious bonding agent. In this paper tests are presented where the epoxy has been replaced with a cement based bonding agent for retrofitting. Pilot tests show that very good composite action can be achieved and that only minor changes in the design procedure need to be taken.  相似文献   

4.
This paper reports the results of an experimental program to investigate the bonding behavior of two different types of fiber-reinforced polymer (FRP) systems for strengthening RC members: externally bonded carbon (EBR) plates and bars or strips externally applied with the near-surface-mounted (NSM) technique. The overall experimental program consisted of 18 bond tests on concrete specimens strengthened with EBR carbon plates and 24 bond tests on concrete specimens strengthened with NSM systems (carbon, basalt, and glass bars, and carbon strips). Single shear tests (SST) were carried out on concrete prisms with low compressive strengths to investigate the bonding behavior of existing RC structures strengthened with different types of FRP systems. The performance of each reinforcement system is presented, discussed, and compared in terms of failure mode, debonding load, load-slip relationship, and strain distribution. The findings indicate that the NSM technique could represent a sound alternative to EBR systems because it allows debonding to be delayed, and hence FRP tensile strength to be better exploited.  相似文献   

5.
The current method of bonding fiber-reinforced polymer (FRP) strengthening strips to concrete structures requires extensive time and semiskilled labor. An alternative method is to use a commercial off-the-shelf powder-actuated fastening system to attach FRP strips to concrete. A series of flexural tests were conducted on 15 304.8×304.8×3,657.6?mm (12×12×144?in.) reinforced concrete beams. Two beams were tested unstrengthened, 12 were strengthened with mechanically fastened FRP strips, and one was strengthened with a bonded FRP strip. The effects of three different strip moduli, different fastener lengths and layouts, and predrilling were examined. Three of the beams strengthened with mechanically attached FRP strips showed strengthening comparable to the beam strengthened with a bonded FRP strip. The same three beams strengthened with mechanically attached FRP strips also showed a greater ductility than the beam strengthened with a bonded FRP strip.  相似文献   

6.
In recent years, a tremendous effort has been directed toward understanding and promoting the use of externally bonded fiber-reinforced polymer (FRP) composites to strengthen concrete structures. Despite this research effort, studies on the behavior of beams strengthened with FRP under fatigue loading are relatively few, especially with regard to its shear-strengthening aspect. This study aims to examine the fatigue performance of RC beams strengthened in shear using carbon FRP (CFRP) sheets. It involves six laboratory tests performed on full-size T-beams, where the following parameters are investigated: (1) the FRP ratio and (2) the internal transverse-steel reinforcement ratio. The major finding of this study is that specimens strengthened with one layer of CFRP survived 5 million cycles, some of them with no apparent signs of damage, demonstrating thereby the effectiveness of FRP strengthening systems on extending the fatigue life of structures. Specimens strengthened with two layers of CFRP failed in fatigue well below 5 million cycles. The failure mode observed for these specimens was a combination of crushing of the concrete struts, local debonding of CFRP, and yielding of steel stirrups. This failure may be attributed to the higher load amplitude and also to the greater stiffness of the FRP which may have changed the stress distribution among the different components coming into play. Finally, comparison between the performance of specimens with transverse steel and without seems to indicate that the addition of transverse steel extends the fatigue life of RC beams.  相似文献   

7.
The rehabilitation, repair, and strengthening of concrete structures has increased worldwide with a growing number of systems employing externally applied fiber-reinforced polymer (FRP) composites. However, the service life and effectiveness of FRP repair and strengthening techniques when applied to concrete in corrosive marine environments is still not well understood. This paper presents the results of an experimental study on the corrosion performance of embedded steel reinforcement in cylindrical reinforced concrete specimens with 13 different surface treatment options. Samples were subjected to an impressed current and a high salinity solution. Test variables included the type of epoxy, wrap fiber orientation, and the number of wrap layers. Samples were evaluated for corrosion activity by monitoring corrosion potentials and impressed current flow levels, and by examining reinforcement mass loss and concrete chloride content among samples. Test results indicated that FRP wrapped specimens had prolonged test life, decreased reinforcement mass loss, and reduced concrete chloride content. The performance of wrapped specimens was superior to that of either control samples or those coated only with epoxy. Epoxy type had a significant effect on the performance of samples regarding their resistance to corrosion. It was concluded that carbon FRP wraps were able to confine concrete, slowing deterioration from cracking and spalling and inhibiting the passage of salt water.  相似文献   

8.
The objective of this study is to investigate the efficiency of an innovative technique for strengthening masonry arches, based on the use of high strength steel cords embedded in either an epoxy (steel reinforced polymer) or mortar matrix (steel reinforced grout). Ten prototypes of brickwork arches strengthened by composite laminates were tested under a monotonic vertical load applied at the quarter-span. Load tests were performed to compare the behavior up to collapse of strengthened masonry arches; the influence of the types of reinforcement (steel and carbon fibers) and matrices (epoxy and cementitious), as well as location of the strengthening layer (intrados, extrados, and both) and the presence of anchorage systems has been investigated. The experimental results highlight the enhanced strength of the arches reinforced with steel cords, as well as the role of the mechanical anchoring with regard to the resulting final strength.  相似文献   

9.
The last few years have witnessed a wide use of externally bonded fiber reinforced polymer (FRP) sheets for strengthening existing reinforced and prestressed concrete structures. The success of this strengthening method relies on the effectiveness of the load-transfer between the concrete and the FRP. Understanding the stress transfer and the failure of the concrete–FRP interface is essential for assessing the structural performance of strengthened beams and for evaluating the strength gain. This paper describes an experimental investigation of the interfacial bond behavior between concrete and FRP. The strain distributions in concrete and FRP are determined using an optical technique known as digital image correlation. The results confirm that the debonding process can be described in terms of crack propagation through the interface between concrete and FRP. The data obtained from the analysis of digital images was used to determine the interfacial material behavior for the concrete–FRP interface (stress versus relative displacement response) and the fracture parameter GF (fracture energy). The instability in the test response at failure is shown to be the result of snapback, which corresponds with the elastic unloading of the FRP as the load carrying ability of the interface decreases with increasing slip.  相似文献   

10.
For concrete beams and slabs, the bonding of fiber reinforced plastic (FRP) plates to the bottom surface is an effective and efficient technique for flexural strengthening. Failure of strengthened members often occurs due to stress concentrations at the FRP/concrete interface. For debonding failure initiated at the bottom of shear or shear/flexural cracks in the concrete, experimental results clearly indicate a progressive failure process accompanied by gradual reduction in shear transfer capability at the interface. Several existing models for FRP debonding have taken interfacial shear softening into account. However, the assumed shear stress versus slip relations employed in the models have never been properly measured. In this investigation, a combined experimental/theoretical approach for the extraction of interfacial stress versus slip relation is developed. With loading applied to a bonded FRP plate, strain is measured at various points along its length. Based on the strain measurements, the interfacial softening curve is derived from a finite element analysis. The present paper will present the proposed approach in detail, demonstrate its application to typical experimental data, and discuss the implications of the results.  相似文献   

11.
The use of composite materials for strengthening the ailing infrastructure has been steadily gaining acceptance and market share. It can even be stated that this strengthening technique has become main stream in some applications such as strengthening concrete structures. The same cannot be said about steel structures; for which research on composite material strengthening is relatively new. Several challenges face strengthening steel structures using composite materials such as the need for high-modulus composites to improve the effectiveness of the strengthening system. This paper explores a new approach for strengthening steel structures by introducing additional stiffness to buckling-prone regions. The proposed technique relies on improving the out-of-plane stiffness of buckling-prone members by bonding pultruded fiber-reinforced polymer (FRP) sections as opposed to the commonly used approach that relies on in-plane FRP contribution. The paper presents results from an experimental investigation where shear-controlled beam specimens were tested to explore the feasibility of the proposed technique. Bar specimens were also tested in tension to compare between in-plane and out-of-plane contributions of FRP to the behavior and strength of thin steel plates. Based on the results, it can be concluded that this strengthening technique has great potential for altering failure modes by delaying the initiation of undesirable local buckling of thin steel plates. Recommendations for future research efforts are made to expand the knowledge base about this unexplored strengthening technique.  相似文献   

12.
The use of fiber-reinforced polymers (FRPs) to poststrengthen concrete structures started to be investigated in the mid-1970s and today is widely recognized as an attractive technique to be used in civil structures, especially when aggressive environments prevent the use of materials that are susceptible to corrosion, such as steel. Different FRP poststrengthening techniques have been developed and applied in existing structures, aiming to increase their load capacity. Most FRP systems used nowadays consist of carbon fibers embedded in epoxy matrix. Regardless of the advantages and the good results achieved using carbon fiber-reinforced polymers, some new possibilities, such as the use of prestressing and lower cost fiber materials, are being analyzed in an attempt to provide viable alternatives for a more efficient, safe, and rational use of FRP systems. The main purpose of the present work was to make a comparative analysis of the behavior of reinforced concrete beams poststrengthened with carbon, aramid, and glass FRP subjected to static loading tests. Experimental results were evaluated against theoretical ones obtained through an analytical model that considers a trilinear behavior for the load versus displacement curves. The experimental results indicate that all FRP systems applied have appropriate structural performance for use in poststrengthening applications of RC. The choice of the more suitable system would, therefore, be strongly influenced by circumstances regarding cost limitations and level of reinforcement required.  相似文献   

13.
A fundamental understanding of fiber-reinforced polymer (FRP) laminate bonding behavior, including bond strength and effective bonding length, is of primary importance for the development of design guidelines and codes for concrete structures strengthened with externally bonded FRP reinforcement as a bond-critical application. However, the long-term serviceability of such FRP-strengthened structures is still a concern due to a lack of both long-term performance data and a suitable model to represent these performances. This study aims at presenting a viscoelastic model describing the time-dependent behavior of the FRP–concrete interface. The proposed model has been calibrated using strain measurements of the designed specimen for the experimental investigation of the time-dependent behavior of the FRP–concrete interface, including the development of the effective bonding length. Afterward, the proposed model satisfactorily predicts the time-dependent bonding length of the FRP sheet in comparison with the experimental results. The effects, both of creep of the adhesive layer and of creep and shrinkage of the concrete, on the changes in the effective bonding length of the PFRP sheet are also discussed.  相似文献   

14.
A set of 30 concrete beams reinforced with carbon/epoxy FRP (fiber-reinforced plastic) and four reinforced with comparable size steel rebars were subjected to static bending tests. Adequate bond between the FRP and the concrete was obtained, due to the use of carbon fiber overwrap on the smooth pultruded FRP rods. With adequate bond, the large strain to failure (>2%) of the FRP determines the ductility and failure mode of the FRP reinforced beams. An analytical evaluation of the fracture energy in these experiments shows that there is ductility due to the large fraction of the total strain energy that is absorbed in the concrete, because of the formation of distributed cracking. Variations in overwrap configuration, addition of steel stirrups, addition of polypropylene fibers, and comparison with four beams reinforced with equivalent steel reinforcement were also analyzed.  相似文献   

15.
Numerous research studies have shown externally bonded fiber-reinforced polymer (FRP) materials can be used efficiently and economically to repair and retrofit deteriorated or understrength concrete structures. FRP materials are being widely applied in the rehabilitation of deteriorated bridges, however, their use in buildings has been limited, partly because of insufficient knowledge about the performance of FRP materials in fire. To enable further applications of FRPs in buildings, this paper presents a study on the residual performance after fire of four reinforced-concrete (RC) T-beams that were prestrengthened with externally bonded FRP sheets and provided with a supplemental fire protection system. Results from this study suggest that the RC beams strengthened with FRPs prior to fire exposure retained most of their initial unstrengthened flexural capacity after fire. This is attributed to the fact that the temperature of the internal concrete and reinforcing steel was kept to below 200 and 593°C, respectively.  相似文献   

16.
This paper explores a new hybrid fiber-reinforced polymer (FRP) sheet/ductile anchor system for rehabilitation of reinforced concrete (RC) beams. The advantages of the proposed strengthening method is that it overcomes the problem of low ductility that is associated with brittle failure mode in conventional methods of strengthening beams using epoxy-bonded FRP sheets. The proposed system leads to a ductile failure mode by triggering yielding to occur in a steel anchor system (steel links) rather than by rupture or debonding of FRP sheets, which is sudden in nature. Four half-scale RC T-beams were tested under four-point bending. Three retrofitted beams were strengthened using one layer of carbon FRP sheet. The results of the two beams that were strengthened with the new hybrid FRP sheet/ductile anchor system were compared with the results from the beam strengthened with conventional FRP bonding method and the control beam. The results show the effectiveness of the proposed strengthening system in increasing flexural capacity and ductility of RC beams.  相似文献   

17.
Research into the use of fiber-reinforced polymers (FRPs) in structures at the Royal Military College of Canada (RMC) during the past two decades has largely focused on two important military engineering goals—mobility and survivability. FRP research in the area of mobility has included the strengthening and repair of reinforced concrete beams and slabs and the development of portable lightweight bridges suitable for most wheeled and tracked vehicles. With respect to survivability, a particular interest is in the use of FRPs to enhance the blast resistance of structural columns and beams. Such research may be equally pertinent to improving the blast resistance of a broad range of critical domestic infrastructure worldwide, given both the increasing concerns about terrorist acts and the desire as well to improve resistance to accidental explosion. This paper will report on the experimental work of two of the most recent FRP research projects carried out at the RMC in support of military objectives—the development of a lightweight portable glass FRP bridge and the use of FRP to strengthen reinforced concrete structural columns against blast. A full-sized FRP box beam was constructed and tested in the laboratory and 28 half-scale reinforced concrete columns, some strengthened with either steel reinforced polymer (SRP) or with FRP, were tested in the field under blast load. From this research, it can be seen that FRP as a structural material offers significant advantages to military forces working in conflict zones, whether for traditional strengthening of damaged or understrength structures, lightweight portable bridge options, or as a means of strengthening structures against blast effects.  相似文献   

18.
In recent years, the use of carbon fiber reinforced polymer (CFRP) has been shown to be a competitive method for strengthening both the structural and economic performance of concrete. The method has been used for almost a decade, yet – most research undertaken has studied the flexural behavior of strengthened structures, while research on shear strengthening has been limited. The work presented in this paper focuses on CFRP shear strengthening of concrete beams. The theory presented addresses the limitations of the widely used truss model, and a refinement is suggested. A reduction factor to consider the nonuniform strain distribution over the cross section is proposed and strain limitations are prescribed for the principal strain in the concrete instead of the fiber strain, as in previous studies. The derived analytical model is compared to experimental data from tests. Fairly good agreement is found between results from tests and calculated values from theory with regard to both shear-bearing capacity and average fiber utilization.  相似文献   

19.
Several independent studies have confirmed that fiber-reinforced polymers (FRP) used for repairing corrosion-damaged concrete structures slow down the corrosion rate. This suggests that in this application, FRP serves as a barrier to the ingress of moisture and oxygen that are critically important for sustaining electrochemical corrosion of steel in concrete. Because oxygen molecules are smaller than both water and chloride molecules, they diffuse faster. Therefore, their permeation through FRP is more critical. This paper presents results from an experimental study that determined the oxygen permeability of FRP laminates. Four different commercially available carbon-fiber-reinforced polymer (CFRP) and glass-fiber-reinforced polymer (GFRP) systems were investigated, and four different fiber orientations were evaluated for one-layer and two-layer configurations. The results showed that the oxygen permeability of FRP was somewhat poorer than the epoxy used for its fabrication. Single-layer FRP laminates were less permeable than two-layer laminates, a finding that had previously been reported but considered anomalous. Scanning electron micrographs indicated that this could be attributed to voids between the layers. The nonzero oxygen permeability of FRP explains why it can slow down but cannot completely stop chloride-induced corrosion of concrete.  相似文献   

20.
Reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer (FRP) fully wrapped around the member usually fail due to rupture of FRP, commonly preceded by gradual debonding of the FRP from the beam sides. To gain a better understanding of the shear resistance mechanism of such beams, particularly the interaction between the FRP, concrete, and internal steel stirrups, nine beams were tested in the present study: three as control specimens, three with bonded FRP full wraps, and three with FRP full wraps left unbonded to the beam sides. The use of unbonded wraps was aimed at a reliable estimation of the FRP contribution to shear resistance of the beam and how bonding affects this contribution. The test results show that the unbonded FRP wraps have a slightly higher shear strength contribution than the bonded FRP wraps, and that for both types of FRP wraps, the strain distributions along the critical shear crack are close to parabolic at the ultimate state. FRP rupture of the strengthened beams occurred at a value of maximum FRP strain considerably lower than the rupture strain found from tensile tests of flat coupons, which may be attributed to the effects of the dynamic debonding process and deformation of the FRP wraps due to the relative movements between the two sides of the critical shear crack. Test results also suggest that while the internal steel stirrups are fully used at beam shear failure by FRP rupture, the contribution of the concrete to the shear capacity may be adversely affected at high values of tensile strain in FRP wraps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号