首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathodoluminescence from GaN x As1?x layers (0 ≤ x ≤ 0.03) was measured at photon energies ranging from the intrinsic absorption edge to 3 eV at room temperature. An additional emission band was visible in the visible range of the cathodoluminescence spectra. The intensity of this band is two orders of magnitude lower than the edge-emission intensity. The photon energy corresponding to the peak of this band and its FWHM are virtually independent of x and equal to ~2.1 and 0.6–0.7 eV, respectively. This emission is related to indirect optical transitions of electrons from the L 6c and Δ conduction-band minimums to the Γ15 valence-band maximum.  相似文献   

2.
The electrical properties of chromium-doped n-Pb1?x Ge x Te alloys (x = 0.02–0.13) have been studied. A decrease in the free-electron concentration and a metal-insulator transition are observed as the germanium content of alloys increases. This is due to the Fermi level pinning by the chromium impurity level and to the flow of electrons from the conduction band to the impurity level. The experimental data obtained are used to calculate, in terms of the two-band Kane dispersion law, the dependences of the electron concentration and Fermi energy on the germanium content in the alloy. The motion rate of the chromium-related level with respect to the conduction band bottom is determined and a model of variation of the electronic structure with the matrix composition is suggested.  相似文献   

3.
The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS x Se1?x alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported.  相似文献   

4.
The Raman spectra of AsxS1?x glasses with x < 40 at % (Z < 2.4) have been studied in a wide temperature range (20–300 K). A well resolved boson peak is observed in the low-frequency portion of the spectrum, not withstanding the appearance of floppy modes in the glasses under study. It is shown that the boson peak is characterized by two parameters: intensity and the peak position. A comparison of the intensity variation for the boson peaks indicates that the degree of disorder increases as x decreases. This effect is caused by floppy modes in the glass network and by sulfur phase separation. Studies of reduced boson peaks in the Raman spectra of AsxS1?x glasses confirms the theoretical assumption that the shape of the peaks is independent of composition and temperature.  相似文献   

5.
Coarse-grained crystals of AgGaSe2 and AgInSe2 ternary compounds and their alloys are grown by planar crystallization of the melts. For the crystals produced in this way, the transmittance spectra near the fundamental absorption edge are studied. From the experimental spectra, the band gap (E g) and its variation with composition are determined. It is established that E g is a nonlinear function of the composition parameter x. The dependence E g (x) is calculated theoretically in the context of the Van Vechten-Bergstresser model and Hill-Richardson pseudopotential model.  相似文献   

6.
The steady-state photocurrent in the fundamental absorption region of Pb1 ? x Sn x Te:In films is calculated with the field injection of electrons from the contact and their capture by traps in the bulk taken into account. The calculated and experimental current-voltage characteristics are compared at liquid-helium temperature. The represented experimental data on the dependence of the Hall effect on the injection level agree well with the considered model.  相似文献   

7.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

8.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

9.
The transmittance spectra of (CuInSe2)1 − x (2MnSe) x alloy crystals grown by the Bridgman method are studied in the temperature range from 10 to 300 K. For these materials, the band gap and its temperature dependence are determined. It is shown that the band gap decreases with increasing temperature. The dependences of the band gap of the (CuInSe2)1 − x (2MnSe) x alloys on the composition parameter x are plotted.  相似文献   

10.
Layers of the GaSb1 ? x As x alloy with arsenic content in the range x = 0.06–0.15 have been grown for the first time on InAs (100) substrates by metal-organic vapor-phase epitaxy. A new approach to the calculation of the band diagram of the GaSbAs alloy is suggested. It is demonstrated on the basis of magnetotransport measurements in p-GaSbAs/p-InAs heterostructures and with the method suggested by the authors for the calculation of band diagrams for alloys in the GaSbAs system that, in the composition range under study, the GaSbAs/InAs heterojunction is a type II broken-gap heterojunction.  相似文献   

11.
Using the solution of the 2D Schrödinger equation, systematic features of distribution of charge carriers in the Si/Si1 ? x Ge x nanostructures and variations in the efficiency of radiative recombination when pyramidal 2D clusters are transformed into 3D dome clusters with increasing thickness of nanolayers are established. The effect of the composition of the layers on the efficiency of the elastic stress in the structure and, as a consequence, the variation in conduction bands and valence band of the Si1 ? x Ge x nanostructures is taken into account. On realization of the suggested kinetics model, which describes recombination processes in crystalline structures, saturation of radiation intensity with increasing the pump intensity caused by an increase in the contribution of the Auger recombination is observed. A decrease in the contribution of the nonradiative Auger recombination is attained by decreasing the injection rate of carriers into the clusters, and more precisely, by an increase in the cluster concentration and an increase in the rate of radiative recombination.  相似文献   

12.
Single crystals of the ternary system Bi2−x Tl x Se3 (nominally x = 0.0 to 0.1) were prepared using the Bridgman technique. Samples with varying content of Tl were characterized by measurement of lattice parameters, electrical conductivity σ ⊥c, Hall coefficient R H(Bc), and Seebeck coefficient ST⊥c). The measurements indicate that incorporation of Tl into Bi2Se3 lowers the concentration of free electrons and enhances their mobility. This effect is explained within the framework of the point defects in the crystal lattice, with formation of substitutional defects of thallium in place of bismuth (TlBi) and a decrease in the concentration of selenium vacancies (VSe + 2 V_{\rm{Se}}^{ + 2} ). The temperature dependence of the power factor σS 2 of the samples is also discussed. As a consequence of the thallium doping we observe a significant increase of the power factor compared with the parent Bi2Se3.  相似文献   

13.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

14.
Optical studies of unstrained narrow-gap Al x In1 − x Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0–0.52 and monitored by electron probe microanalysis. The band gap E g is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E g (x) for the Al x In1 − x Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.  相似文献   

15.
The temperature and concentration dependences of the electrical (conductivity σ, the Hall coefficient R), thermoelectric (thermovoltage α), and thermal (thermal conductivity K tot) characteristics of Sm x Pb1 − x Te alloys (x = 0, 0.02, 0.04, 0.08) are studied in the temperature range 100–500 K. Using the data for σ, α, and K tot, the thermoelectric power α2σ, figure of merit Z, and efficiency δ are calculated. It is established that at room-temperature α2σ and Z peak at the hole concentration p ≈ 1.2 × 1018 cm−3.  相似文献   

16.
The magnetoresistance of a lightly doped p-Ge1?xSix alloy is studied in the range of compositions x = 1–2 at %. The results are compared with the available data for lightly doped p-Ge. The studies have been carried out using ESR measurements at a frequency of 10 GHz in the temperature range 10–120 K. It is established that micrononuniformity in the distribution of Si in the Ge lattice (Si clusters) suppresses the interference part of the anomalous magnetoresistance and, in addition, results in an averaging of the effects of light and heavy holes. This observation suggests a sharp decrease in the inelastic scattering time in the case of a Ge1?xSix solid solution as compared to that of Ge.  相似文献   

17.
Thermopower in n-Cd0.2Hg0.8Te (6–100 K) is studied. A large effect of drag of the charge carriers by phonons αph is found. The influence of the magnetic field H on the drag thermopower is considered. It is established that the magnetic field exerts the effect mainly on the electron component of αph. The data are interpreted in the context of the theory taking into account the effect of H on thermopower αph, in which parameter A(ɛ) proportional to the static force of the drag effect is introduced. By the experimental data αph(T, H), T, and H dependences A(ɛ) are determined. It is shown that, as H increases, A(ɛ) sharply decreases. This explains a decrease in αph in the magnetic field, power index k in dependence αphT −κ, and narrowing the region of manifestation of the drag effect. It is established that at classically high fields, the drag effect in n-Cd0.2Hg0.8Te does not vanish.  相似文献   

18.
Electron spin resonance in semimagnetic Cd1?xMnxTe (0<x<0.7) and Zn1?xMnxTe (0<x<0.53) compounds was studied at temperatures of 77 and 300 K. It is found that two types of paramagnetic centers exist in Zn1?xMnxTe, one of which is related to Mn2+ ions and the other is attributed to structural defects in the crystals.  相似文献   

19.
Liquid-phase epitaxy is used to fabricate Pb0.8Sn0.2Te films, undoped or doped with indium to different levels. The depth profiles of the carrier density and dopant concentration in the films are measured and examined. A uniform dopant concentration to a depth of 15 μm is obtained. Electrical-conduction inversion is observed at a temperature of 77.3 K as the doping level is varied. The liquid-phase epitaxial method is shown to be a more suitable technology for the reproducible manufacture of epitaxial films with a given carrier density, such as the ones used in terahertz detectors.  相似文献   

20.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号