首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 202 毫秒
1.
以火麻籽为原料,利用水酶法提取火麻籽油。通过单因素实验及中心组合实验研究酶的种类、料液比、加酶量、酶解时间等因素对火麻籽提油率的影响。结果表明,酸性蛋白酶和纤维素酶按1∶1进行复配且先加酸性蛋白酶作为提取酶时,提取效果最好;在此基础上,通过响应面优化得到水酶法提取火麻籽油的最佳工艺条件为:复合酶添加量1.10%(w/w)、料液比1∶3.6g/mL、酶解时间3.8h,火麻籽油的提油率为75.64%。  相似文献   

2.
以火麻籽为原料,利用水酶法提取火麻籽油。通过单因素实验及中心组合实验研究酶的种类、料液比、加酶量、酶解时间等因素对火麻籽提油率的影响。结果表明,酸性蛋白酶和纤维素酶按1∶1进行复配且先加酸性蛋白酶作为提取酶时,提取效果最好;在此基础上,通过响应面优化得到水酶法提取火麻籽油的最佳工艺条件为:复合酶添加量1.10%(w/w)、料液比1∶3.6g/mL、酶解时间3.8h,火麻籽油的提油率为75.64%。   相似文献   

3.
王旭  毛波  王聪  杨青  万端极 《食品科技》2012,(6):197-200
采用水酶法从葵花籽中提取葵花籽油。通过对比试验确定最佳用酶,利用单因素和正交试验探讨原料烘烤时间、酶用量、酶解时间以及料液比对提油效果的影响,并通过验证试验对正交试验结果进行了验证。结果表明:中性蛋白酶试验效果最好;水酶法提取葵花籽油的最佳工艺参数为:烘烤时间16h,酶用量1%,酶解时间4h,料液比1:5(w/v)。验证试验结果表明葵花籽游离油得率80.94%,过氧化值4.57mmol/kg,渣中蛋白含量3.36%。  相似文献   

4.
何林枫  王静  李利钦  肖迪  李尚泽  胡渝 《食品与机械》2023,39(3):188-193,216
目的:优化水酶法提取樱桃籽油工艺,提高樱桃籽利用率。方法:在单因素试验基础上,运用混料设计对混合酶的混合比例进行优化,以确定最佳提取工艺条件,再对樱桃籽油的理化性质进行检测。结果:混合酶法提取樱桃籽油的最优酶解条件为:混合酶(m维素酶∶m果胶酶∶m酸性蛋白酶为0.67∶0.10∶0.23)添加量2.0%,液料比(V蒸馏水∶m樱桃籽粉)10∶1 (mL/g),酶解温度45℃,pH 4.0,酶解4.0 h,樱桃籽油回收率达到93.18%,实际提取率为28.66%。所得樱桃籽油符合食用油安全标准。结论:混料设计辅助水酶法提取樱桃籽油的工艺具有可行性。  相似文献   

5.
以牡丹籽为原料,采用水酶法提取牡丹籽油。通过单因素试验,研究酶解温度、酶解时间、酶添加量、液料比对牡丹籽油提取率的影响,在此基础上,采用二次正交旋转组合试验对提取工艺条件进行优化。结果表明,各因素对牡丹籽油提取率的影响强弱顺序依次为酶解温度、液料比、酶添加量、酶解时间,水酶法提取牡丹籽油的最优工艺条件为:酶解温度52℃、液料比3∶1、酶添加量3.6%(以牡丹籽质量计)、酶解时间4 h,在此条件下牡丹籽油提取率可达92.8%。  相似文献   

6.
水酶法提取牡丹籽油的研究   总被引:3,自引:0,他引:3  
采用水酶法从牡丹籽中提取牡丹籽油,通过对比实验,选择了三步酶解结合二次破乳的工艺流程。5 g牡丹籽粉三步酶解结合二次破乳提取牡丹籽油的优化条件为:料水比1∶5,细胞壁多糖水解酶(纤维素酶与果胶酶配比2∶1)加酶量1.5 mL,酶解时间2.5 h;α-中温淀粉酶加酶量0.6 mL,酶解时间45 min;碱性蛋白酶加酶量0.18 g,酶解时间2 h;冷冻解冻破乳法,-20℃冷冻18 h后50℃解冻2 h。在优化条件下取200 g牡丹籽粉提取牡丹籽油,其游离油得率达到17.6%,总油得率达到25.4%,所得牡丹籽油品质良好,未检出过氧化物,酸值(KOH)3.5 mg/g,碘值(I)177.09 g/100 g,皂化值(KOH)173.07 mg/g;牡丹籽油中不饱和脂肪酸含量达到92.77%,其中亚麻酸含量37.33%,亚油酸含量31.13%,油酸含量24.31%。水酶法提取牡丹籽油具有牡丹籽粉无需干燥,整个提油过程温度不超过70℃的优点,可大大减少提取过程中油脂的氧化。  相似文献   

7.
以辣木籽为原料,采用水酶法提取辣木籽油,并对其体外抗氧化活性进行研究。以辣木籽油提油率为指标,确定复合酶的组合及比例(蛋白酶∶纤维素酶=2∶1),在单因素试验基础上,采用正交试验优化提取工艺。结果表明水酶法提取辣木籽油的最佳工艺为料液比1∶4 (g/mL)、pH 4、酶添加量3%、酶解温度55℃,在此条件下,辣木籽油的提取率为61.35%。水酶法提取的辣木籽油具有较强的抗氧化活性。5 mg/mL辣木籽油对羟自由基(·OH)和DPPH·清除率分别为80.30%和62.67%。  相似文献   

8.
以提取油脂后的裂壶藻渣为原料采用蛋白酶进行酶解,以水解度、蛋白回收率及产物抗氧化活性为指标,确定最佳复合酶解工艺。结果表明,在p H为7.5,水解温度为50℃,料水比为1∶12(w/w),加酶量为0.5%(E/S,w/w)条件下,采用复合蛋白酶与Alcalase 2.4 L复配方式(1∶1,w/w)酶解裂壶藻渣6 h后的产物水解效果与抗氧化活性均优于其他单酶或复合酶解产物。在此条件下,酶解产物的水解度为11.15%,蛋白回收率为70.82%,羟自由基半抑制浓度IC50为1.656 mg/m L,还原力为1.417(浓度3 mg/m L),具有较好抗氧化活性。   相似文献   

9.
采用超声波辅助纤维素酶提取牡丹籽饼中多糖。在单因素试验的基础上,采用PB设计对影响多糖提取量的9个因素(pH、加酶量、酶解时间、酶解温度、超声时间、超声功率、超声温度、液料比、粒度)进行显著性分析。通过BBD响应面法优化最佳提取工艺条件。采用清除DPPH自由基活性评价牡丹籽饼中多糖的抗氧化能力。结果表明,牡丹籽饼中多糖的最佳提取工艺条件为:加酶量0.45%,酶解时间60 min,酶解温度45℃,pH 4.5,超声时间19 min,超声功率300 W,超声温度40℃,液料比19∶1,粒度60目。在最佳工艺条件下,牡丹籽饼中多糖提取量为196.87 mg/g。牡丹籽多糖具有一定DPPH自由基清除能力,但弱于V_C,其IC_(50)值为31.19μg/m L。  相似文献   

10.
水酶法提取枸杞籽油工艺优化   总被引:1,自引:0,他引:1  
用水酶法提取枸杞籽油,先通过单因素试验选取影响因素和水平,再采用二次正交旋转组合设计方法研究液料比、酶添加量、酶解时间对枸杞籽油得率的影响。结果表明,各因素对枸杞籽油得率影响大小依次为液料比酶添加量酶解时间;频率分析法得到枸杞籽油最优的提取工艺为液料比3.6∶1(V∶m),酶添加量3.0%(以原料量计),酶解时间3h,该条件下3次的枸杞籽油平均验证得率为87.6%。  相似文献   

11.
水酶法提取葵花籽油工艺及机理   总被引:1,自引:0,他引:1  
本研究是以脱酚的葵花籽仁为原料,主要研究了葵花籽粉碎粒径及各种水酶法提取条件等对葵花籽油提取率的影响;采用激光共聚焦显微镜(Contocal Laser Scanning Microscope,CLSM)对葵花籽粉碎过程及各相进行了表征,明确了较佳工艺条件的内在机制。研究表明,经进一步精粉碎,粒径能够达19.68 μm,游离油得率大幅提高。水酶法提葵花籽油的较佳工艺条件为:料液比1:5(w/v),添加1.5%的碱性蛋白酶Protex 6L反应2 h。该条件下,葵花籽游离油得率达到92.48%。CLSM证明精粉碎得到的葵花籽物料比剪切粉碎的尺寸更小、更均匀。水酶法提取的葵花籽油在主要理化指标上达到了冷榨一级油的标准,其反式脂肪酸显著低于市售低温压榨葵花籽油。水酶法提取的油品质更好,得油率更高,有明显的优势。  相似文献   

12.
《Food chemistry》1998,61(4):467-474
Partially dehulled sunflower seeds were subjected to a hydrolytic treatment with cellulases during aqueous processing for oil and protein extraction. Sub-optimal extraction conditions (particle size and separation technology) were established in order to appreciate the potential improvement caused by the enzymatic treatment and to select the best operational conditions. The effects of three operational variables (extraction–treatment time, water/seeds ratio and enzyme/seed ratio) were studied on three objective functions (the extent of hydrolysis reaction, the oil extraction yield and the percent polyphenolics removal). After 2 h of enzymatic treatment–extraction a practical optimum in the range 7.5–8 g water g−1 seeds and 1.25–1.4 g enzyme 100 g−1 seeds could be defined. Under these conditions the oil extractability and the polyphenolics removal are improved by more than 30 and 80%, respectively.  相似文献   

13.
Sunflower seeds were cleaned, roasted, decorticated and ground to a smooth thick oily suspension (tahina). Chemical analysis showed that sunflower tahina-like butter contained higher ether extract (62·3%) than sesame tahina (55·3%). Sesame tahina was higher in ash and carbohydrate contents, while the protein content was similar in both. Microscopic examination of stained films indicated that the system in sunflower tahina was essentially a suspension of solid particles in a continuous oil phase (water in oil system). Oil separation in sunflower tahina was followed during storage at room temperature for 90 days. The addition of glycerol monostearate had a pronounced stabilizing action resulting in reducing oil separation from 11·8% to 6·25%. The peroxide value of sunflower tahina oil increased during storage, reaching a maximum value after 60 days' storage, then decreased. The oxidative stability of sunflower oil was increased with the addition of 0·02% butylated hydroxy anisole (BHA) and 0·02% butylated hydroxy toluene (BHT).Organoleptic evaluation showed no significant differences between sunflower and sesame halawas in texture and flavor except that the color of sunflower halawa was distinctly darker. The chemical analysis emphasized the high caloric, as well as nutritive value, of sunflower halawa. The use of Egyptian sunflower seeds in tahina and halawa tahiniamaking would reduce the importation of sesame seeds.  相似文献   

14.
Aqueous enzymatic oil extraction of safflower seeds was assisted by Alcalase 2.5L and Celluclast 1.5L. Enzyme type and amount, pH, time, temperature, churning rate, dilution ratios and particle size were varied to determine their influence on the oil amount. The amount of oil recovered was higher using seeds ground to a particle size of <0.6 mm. Response surface methodology was employed for the optimisation of aqueous enzymatic oil extraction conducted with Celluclast 1.5L. When the extraction was assisted by Celluclast 1.5L, the maximum oil amount and yield were 33.3 (% w/w) and 79.7 (% w/w), respectively. The optimum conditions were 48.3 °C; 0.25 mL enzyme g?1 substance; pH, 4.84; resulting oil amount and yield were 28.2 (% w/w) 65 (% w/w), respectively. The predicted critical values were experimentally verified, and an oil amount of 27.1 (% w/w) was achieved. The enzyme treatment did not have any determining effect on the physicochemical properties of extracted oil.  相似文献   

15.
水代法提取葵花籽油及乳状液的破除   总被引:1,自引:0,他引:1  
利用激光共聚焦电镜对葵花籽原料中的油体和蛋白质的分布状态进行了表征。再以脱酚葵花籽仁为原料,结合激光共聚焦显微镜分析,探讨了不同的粉碎粒度对葵花籽提油率的影响。结果表明,当平均粒径小于30μm时,葵花籽的游离油率最高。水代法的最高提油率为87.12%。然而,水代法提取葵花籽油过程中会产生大量高含油量的乳状液难以破除。因此比较了不同的破乳处理方法,包括乙醇辅助、热处理、高速剪切、冷冻解冻及不同种类酶处理等方法的破乳效果,结果表明,冷冻解冻法破乳效果最优,破乳率为94.01%。乙醇辅助破乳法次之,破乳率为92.02%,使得最终葵花籽总提油率达到95.63%。将水代法制取的葵花籽油与市售压榨的葵花籽油进行比较,结果表明,水代法所提油脂具有较好的品质,达到了冷榨一级油标准。优化的葵花籽油提取工艺合理、可行。   相似文献   

16.
研究了水酶法提取葵花籽油过程中热处理及酶解工艺对油脂脂肪酸组成的影响,并与压榨葵花油、超临界萃取葵花油的脂肪酸组成进行了比较,表明水酶法提油工艺中热处理、酶解过程对葵花油脂肪酸组成影响很小。  相似文献   

17.
18.
Enzymatic hydrolytic treatments to enhance the oil extractability from soy and sunflower seeds (low and high oil content, respectively) were performed at a range of experimental conditions (moisture content, particle size, incubation time, pH and agitation). Light microscopy and scanning electron microscopy showed the microstructural changes caused by the enzymatic attack. The extent of the cell wall degradation, closely related to the oil extractability, was observed to be dependent on the operational conditions under which the enzymatic treatment was carried out. Additionally, the effects of the enzymatic treatment on the seed structure were compared with those caused by thermal and mechanical treatments. © 1998 Society of Chemical Industry.  相似文献   

19.
The effects of an enzymatic pretreatment with a protease and a cellulase in the Ricinodendron heudelotii seeds oil extraction process were studied. This was done in a factorial experiment involving three enzyme concentrations and three treatment times for each enzyme. Measured variables were oil extraction yield and quality. Enzymatic hydrolysis significantly ( P <  0.05) increased the oil extraction yield. The highest improvement was obtained for R. heudelotii seeds treated with Protamex (Protease) which gave 15% (w/w) increase. Notwithstanding the increase in free fatty acids, mono, diglycerides, peroxide and acid values, the quality of the oil was not significantly ( P <  0.05) altered by the enzymatic treatments, suggesting the possibility of using enzyme-assisted oil extraction methods to improve upon R. heudelotii processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号