首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vapor pressure of plutonium dioxide (PuO2) was investigated in the range 1450° to 1775°C in air, argon, and oxygen atmospheres by a transpiration technique. There were strong indications that PuO2 can vaporize congruently or as a suboxide species, depending on the atmosphere. The δH°298 for vaporization in 1 atm of oxygen is approximately 154,000 cal per mole. The estimated standard free energy of formation (δG°f) of gaseous PuO2 is −121,000 + 10.7 T from 1227° to 1827°C.  相似文献   

2.
Calcium silicate hydrate (C-S-H) can be viewed as a solid solution, 0.833Ca(OH)2.SiO2.0.917H2O-xCa(OH)2, at equilibrium at 30°C. On this basis, the change in Gibbsfree energy (ΔGr) in the solid-solution reaction was calculated from solubility duta for C-S-H in water. The change in ΔGr with real ratio decreased notably for the higher calcium contents (CaO/Si021.7; ×0.867). Thermochemical values for C-S-H (CaO/SiO2=1.7) were estimated to be ΔH°=-2890 kJ/mol, ΔG°=-2630 kJ/mol, and S°=200 J1/mol.K at 298 K .  相似文献   

3.
The enthalpies of transformation of pure, well-characterized samples of brookite and anatase to rutile were determined by solution calorimetry in a 3Na2O·4MoO3 melt at 971 ±2 K. The experiments gave the following results: brookite→rutile, ΔH°971= -0.17±0.09 kcal mol−1; anatase → rutile, ΔH°971= -0.78±0.20 kcal mol−1.  相似文献   

4.
The phase boundary between CrO2 and Cr2O3 was reinvestigated under high O2 pressures by using a new type of gas compressor. The boundary curve can be represented as log Po2= 7.16-(3579/ T ). Using the observed data, Δ G °, Δ H °, and Δ S ° for the reaction 2CrO2⇋Cr2O3+½O2 were calculated to be: Δ G °= -(1.55/100) T +7.60 kcal/mol, Δ H °= -8.19 kcal/mol, and Δ S °= (-15.8/ T )+0.0155 kcal/mol.  相似文献   

5.
Equilibrium partial pressures of SiF4 were measured for the reactions 2SiO2( c )+2BeF2( d )⇋SiF4( g )+Be2SiO4( c ) (log P siF4(mm) = [8.790 - 7620/ T ] ±0.06(500°–640°C)) and Be2SiO4( c ) +2BeF2( d )⇋SiF4( g ) +4BeO( c )(log P siF4(mm) = [9.530–9400/T] ±0.04 (700°–780°C)), wherein BeF2 was present in solution with LiF as molten Li2BeF4. The solubility of SiF4 was low (∼0.04 mol kg-1 atm-1) in the melt. The results for the first equilibrium were combined with available thermochemical data to calculate improved Δ Hf and Δ Gf values for phenacite (–497.57 ±2.2 and –470.22±2.2 kcal, respectively, at 298°K). The few measurements above 700°C for the second equilibrium are consistent with the temperature of the subsolidus decomposition of phenacite to BeO and SiO2 and with the heat of this decomposition as determined by Holm and Kleppa. Below 700°C, the pressures of SiF4 generated showed an increasing positive deviation from the expression given for the equilibrium involving Be2SiO4 and BeO. This deviation might have been caused by the formation of an unidentified phase below 700°C which replaced the BeO; it more likely resulted from a metastable equilibrium involving BeO and SiO2.  相似文献   

6.
The vaporization of LaCrO3(s) and samples of the composition LaCrO3+ La2O3 was investigated in the temperature range of 1887-2333 K by Knudsen effusion mass spectrometry using Knudsen cells made of tungsten lined completely with iridium. The species Cr(g), CrO(g ), CrO2(g), and LaO(g) were identified in the vapor. Their partial pressures were determined by calibration with pure platinum solid. The thermodynamic activity of Cr2O3, a cr2o3 in LaCrO3 for the Cr203-poor phase boundary of this phase was In aCr2o3= -(17953/T) - 0.485 (temperature T given in K) for the temperature range of the measurements with a probable overall error of ± 13%. The following values and temperature dependence of ΔG°f,T resulted for the formation of LaCrO3(s) according to the reaction 0.5Cr2O3(s) + 0.5La2O3(s) → LaCrO3(s): ΔG°f,2100= -78.9 ± 1.1 kj/mol, Δ H°f,298= -76.8 ± 5.2 kj/mol, and ΔG°r(kJ/mol) = -74.7 - 0.00202 T . Computations for the vaporization of LaCrO3 were conducted to show the volatility of this material in different atmospheres at high temperatures.  相似文献   

7.
The vapor pressure of SmC2 in equilibrium with graphite was measured by the Mnudsen effusion technique. Rates of weight loss from the cells were measured with an automatic recording balance. The apparent pressures varied with orifice size, and equilibrium pressures were calculated by extrapolation to zero orifice area. This work was combined with other studies to obtain log10 P(atm) = - 13.869 × 103/T + 3.752 (1300°-2050°K) for the Sm vapor pressure above SmC2-C. Estimates of S°298 and cp were made for SmC2, and δH°298 was calculated to be 72.0 ± 2 kcal/mol for the reaction SmC2(s) = Sm(g) + 2C(s). This value combined with δH°v, 298= 48.6 kcal/mol for Sm gives a δ°f298 for SmC2 of 23.4 ± 2 kcal/mol.  相似文献   

8.
Equilibrium relationships in the system Al2O3-Ce2Si2O7 in inert atmosphere have been investigated in the temperature range 900° to 1925°C. A simple eutectic reaction was found at 1375°C and 51 mol% Ce2Si2O7. A high-low polymorphic transformation in Ce2Si2O7 was observed at 1274°C. New XRD patterns are suggested for both polymorphs of cerium pyrosilicate. The melting point of Ce2Si2O7 was found to be 1788°C. A value for ΔH°m,Ce2Si2O7 of 36.81 kJ/mol was calculated from the initial slope of the experimentally determined liquidus in equilibrium with the pyrosilicate phase.  相似文献   

9.
Enthalpy of Formation of Zircon   总被引:1,自引:0,他引:1  
Using high-temperature solution calorimetry in molten 2PbO. B2O3, the enthalpy of reaction of the formation of zircon, ZrSiO4, from its constituent oxides has been determined: Δr H 977(ZrSiO4) =−27.9 (± 1.9) kJ/mol. With previously reported data for the heat contents of ZrO2, SiO2, and ZrSiO4 and standard-state enthalpies of formation of ZrO2 and SiO2, we obtain Δf H °298· (ZrSiO4) =−2034.2 (±3.1) kJ/mol and Δf G °298 (ZrSiO4) =−1919.8 kJ/ mol. The free energy value is in excellent agreement with a range previously estimated from solid-state reaction equilibria. At higher temperature also the data are in close agreement with existing data, though the data sets diverge somewhat with increasing T . The limitations of the data for predicting the breakdown temperature of zircon into its constituent oxides are discussed.  相似文献   

10.
Microwave dielectric ceramics with the composition of Ba[Ti1− x (Ni1/2W1/2) x ]O3 ( x =0.4–0.6) were prepared by a solid-state reaction method. The evolution of the crystalline phases was investigated by X-ray powder diffraction analysis. A cubic-to-hexagonal phase transition occurred between 1000° and 1300°C. The phase transition is irreversible; thus, the hexagonal phase remains stable at room temperature. The X-ray powder diffraction data for x =0.5 were refined using the Rietveld method. It was identified as a h -BaTiO3-type hexagonal perovksite with the space group of P 63/ mmc . It also reveals that random occupancy of Ti4+ and W6+ ions occurs in the B-site substructures, whereas Ni2+ ions exclusively occupy the octahedral site in the corner-sharing octahedron. The dielectric properties of dense-sintered ceramics were characterized at microwave frequencies. With an increase in x from 0.4 to 0.6, the Q × f value increased from 26 700 to 42 000 GHz, whereas ɛr decreased from 29.8 to 20.0, and τf from +6.5 to −9.9 ppm/°C.  相似文献   

11.
A barium titanate precursor with a barium:titanium ratio of 1:4 was prepared by controlled coprecipitation of mixed barium and titanium species with an ammonium oxalate aqueous solution at pH 7. The results of thermal analysis and IR measurement show that the obtained precursor is a mixture of BaC2O4·0.5H2O and TiO(OH)2·1.5H2O in a molar ratio of 1:4. Crystallized BaTi4O9 was obtained by the thermal decomposition of a precipitate precursor at 1300°C for 2 h in air. The dimensions of the powder calcined at 1000°C are between 100 and 300 nm. The grain dimensions of the sintered sample for 2 h at 1300°C are of the order of 10 to 30 μm. Dielectric properties of disk-shaped sintered specimens in the microwave frequency region were measured using the TE011 mode. Excellent microwave characteristics for BaTi4O9—ɛ= 38 ± 0.5, Q = 3800–4000 at 6–7 GHz and τ f = 11 ± 0.7 ppm/°C—were found.  相似文献   

12.
When a small amount of CuO was added to (Na0.5K0.5)NbO3 (NKN) ceramics sintered at 960°C for 2 h, a dense microstructure with increased grains was developed, probably due to liquid-phase sintering. The Curie temperature slightly increased when CuO exceeded 1.5 mol%. The Cu2+ ion was considered to have replaced the Nb5+ ion and acted as a hardener, which increased the E c and Q m values of the NKN ceramics. High piezoelectric properties of k p=0.37, Q m=844, and ɛ3 T 0=229 were obtained from the specimen containing 1.5 mol% of CuO sintered at 960°C for 2 h.  相似文献   

13.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

14.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

15.
(Na0.5K0.5)NbO3 (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of 900°C with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at 900°C. A few Zn2+ ions entered the matrix of the specimens and increased the coercive field ( E c) and Q m values of the specimens. High-piezoelectric properties of k p=0.37, Q m=755, and ɛ3 T0=327 were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at 900°C for 2 h.  相似文献   

16.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

17.
CaNdAlO4 microwave dielectric ceramics were modified by Ca/Ti co-substitution, and their dielectric characteristics were evaluated along with their structure and microstructures. Ca1+ x Nd1− x Al1− x Ti x O4 ( x =0, 0.025, 0.05, 0.10, 0.15, 0.20) ceramics with the relative density of over 95% theoretical density were obtained by sintering at 1400°–1450°C in air for 3 h, where the K2NiF4-type solid solution single phase was determined from the compositions of x <0.20, while a small amount of CaTiO3 secondary phase was detected for x =0.20. With Ca/Ti co-substitution in CaNdAlO4 ceramics, the dielectric constant (ɛr) increased with increasing x , and the temperature coefficient of resonant frequency (τf) was adjusted from negative to positive, while the Q × f 0 value increased significantly at first and reached an extreme value at x =0.025 and the maximum at x =0.15. The best combination of microwave dielectric characteristics were achieved at x =0.15 (ɛr=19.5, Q × f 0=93 400 GHz, τf=−2 ppm/°C). The improvement of the Q × f 0 value primarily originated from the reduced interlayer polarization with Ca/Ti co-substitution, while the decreased tolerance factor, the subsequent increased interlayer stress, and the appearance of CaTiO3 secondary phase brought negative effects upon the Q × f 0 value.  相似文献   

18.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

19.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

20.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号