首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A second-order differential equation whose solution is periodic with two frequencies has important applications in many scientific fields. Nevertheless, it may exhibit ‘periodic stiffness’ for most of the available linear multi-step methods. The phenomena are similar to the popular Stömer-Cowell class of linear multi-step methods for one-frequency problems. According to the stability theory laid down by Lambert, ‘periodic stiffness’ appears in a two-frequency problem because the production of the step-length and the bigger angular frequency lies outside the interval of periodicity. On the other hand, for a two-frequency problem, even with a small step-length, the error in the numerical solution afforded by a P-stable trigonometrically-fitted method with one frequency would be too large for practical applications. In this paper we demonstrate that the interval of periodicity and the local truncation error of a linear multi-step method for a two-frequency problem can be greatly improved by a new trigonometric-fitting technique. A trigonometrically-fitted Numerov method with two frequencies is proposed and has been verified to be P-stable with vanishing local truncation error for a two-frequency test problem. Numerical results demonstrated that the proposed trigonometrically-fitted Numerov method with two frequencies has significant advantages over other types of Numerov methods for solving the ‘periodic stiffness’ problem.  相似文献   

2.
In order to improve the efficiency and accuracy of the previous Obrechkoff method, in this paper we put forward a new kind of P-stable three-step Obrechkoff method of O(h10) for periodic initial-value problems. By using a new structure and an embedded high accurate first-order derivative formula, we can avoid time-consuming iterative calculation to obtain the high-order derivatives. By taking advantage of new trigonometrically-fitting scheme we can make both the main structure and the first-order derivative formula to be P-stable. We apply our new method to three periodic problems and compare it with the previous three Obrechkoff methods. Numerical results demonstrate that our new method is superior over the previous ones in accuracy, efficiency and stability.  相似文献   

3.
In this paper we present a new multi-derivative or Obrechkoff one-step method for the numerical solution to an one-dimensional Schrödinger equation. By using trigonometrically-fitting method (TFM), we overcome the traditional Obrechkoff one-step method (or called as the non-TFM) for its poor-accuracy in the resonant state. In order to demonstrate the excellent performance for the resonant state, we consider only the simplest TFM, of which the local truncation error (LTE) is of O(h7), a little higher than the one of the traditional Numerov method of O(h6), and only the first- and second-order derivatives of the potential function are needed. In the new method, in order to solve two unknowns, wave function and its first-order derivative, we use a pair of two symmetrically linear-independent one-step difference equations. By applying it to the well-known Woods-Saxon's potential problem, we find that the TFM can surpass the non-TFM by five orders for the highest resonant state, and surpass Numerov method by eight orders. On the other hand, because of the small error constant, the accuracy improvement to the ground state is also remarkable, and the numerical result obtained by TFM can be four to five orders higher than the one by Numerov method.  相似文献   

4.
In this paper, we present the detailed Mathematica symbolic derivation and the program which is used to integrate a one-dimensional Schrödinger equation by a new two-step numerical method. We add the fourth- and sixth-order derivatives to raise the precision of the traditional Numerov's method from fourth order to twelfth order, and to expand the interval of periodicity from (0,6) to the one of (0,9.7954) and (9.94792,55.6062). In the program we use an efficient algorithm to calculate the first-order derivative and avoid unnecessarily repeated calculation resulting from the multi-derivatives. We use the well-known Woods-Saxon's potential to test our method. The numerical test shows that the new method is not only superior to the previous lower order ones in accuracy, but also in the efficiency. This program is specially applied to the problem where a high accuracy or a larger step size is required.

Program summary

Title of program: ShdEq.nbCatalogue number: ADTTProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTTProgram obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: The program has been designed for the microcomputer and been tested on the microcomputer.Computers: IBM PCOperating systems under which the program has been tested: Windows XPProgramming language used: Mathematica 4.2Memory required to execute with typical data: 51 712 bytesNo. of bytes in distributed program, including test data, etc.: 45 381No. of lines in distributed program, including test data, etc.: 7311Distribution format: tar gzip fileCPC Program Library subprograms used: noNature of physical problem: Numerical integration of one-dimensional or radial Schrödinger equation to find the eigenvalues for a bound states and phase shift for a continuum state.Method of solution: Using a two-step method twelfth-order method to integrate a Schrödinger equation numerically from both two ends and the connecting conditions at the matching point, an eigenvalue for a bound state or a resonant state with a given phase shift can be found.Restrictions on the complexity of the problem: The analytic form of the potential function and its high-order derivatives must be known.Typical running time: Less than one second.Unusual features of the program: Take advantage of the high-order derivatives of the potential function and efficient algorithm, the program can provide all the numerical solution of a given Schrödinger equation, either a bound or a resonant state, with a very high precision and within a very short CPU time. The program can apply to a very broad range of problems because the method has a very large interval of periodicity.References: [1] T.E. Simos, Proc. Roy. Soc. London A 441 (1993) 283.[2] Z. Wang, Y. Dai, An eighth-order two-step formula for the numerical integration of the one-dimensional Schrödinger equation, Numer. Math. J. Chinese Univ. 12 (2003) 146.[3] Z. Wang, Y. Dai, An twelfth-order four-step formula for the numerical integration of the one-dimensional Schrödinger equation, Internat. J. Modern Phys. C 14 (2003) 1087.  相似文献   

5.
In this paper, how to overcome the barrier for a finite difference method to obtain the numerical solutions of a one-dimensional Schrödinger equation defined on the infinite integration interval accurate than the computer precision is discussed. Five numerical examples of solutions with the error less than 10−50 and 10−30 for the bound and resonant state, respectively, obtained by the Obrechkoff one-step method implemented in the multi precision mode, which include the harmonic oscillator, the Pöschl-Teller potential, the Morse potential and the Woods-Saxon potential, demonstrate that the finite difference method can yield the eigenvalues of a complex potential with an arbitrarily desired precision within a reasonable efficiency.  相似文献   

6.
The nonlinear Klein-Gordon equation describes a variety of physical phenomena such as dislocations, ferroelectric and ferromagnetic domain walls, DNA dynamics, and Josephson junctions. We derive approximate expressions for the dispersion relation of the nonlinear Klein-Gordon equation in the case of strong nonlinearities using a method based on the tension spline function and finite difference approximations. The resulting spline difference schemes are analyzed for local truncation error, stability and convergence. It has been shown that by suitably choosing the parameters, we can obtain two schemes of O(k2+k2h2+h2) and O(k2+k2h2+h4). In the end, some numerical examples are provided to demonstrate the effectiveness of the proposed schemes.  相似文献   

7.
According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as
  相似文献   

8.
In this paper we present a delicately designed numerical experiment to explore the relationship between the accuracy of the first-order derivative (FOD) formula and the one of the main structure in an Obrechkoff method. We choose three two-step P-stable Obrechkoff methods as the main structure, which are available from the previous published literature, their local truncation error (LTE(h)) ranging from to , and six FOD formulas, of which the former five ones have the similar structures and the sixth is the ‘exact’ value of the FOD, their LTE(h) arranged from to (we will use to represent the order of a LTE(h)), as the main ingredients for our numerical experiment. We survey the numerical results by integrating the Duffing equation without damping and compare them with the ‘exact’ solution, and find out how its numerical accuracy is affected by a FOD formula. The experiment shows that a high accurate FOD formula can greatly improve the numerical accuracy of an Obrechkoff method for a given main structure, and the error in the numerical solution decreases with the order of the LTE(h) of a FOD formula, only when the order of LTE(h) of the FOD formula is equal to or higher than the one of the main structure, the accuracy of the Obrechkoff method is no longer affected by the approximation of the FOD formula.  相似文献   

9.
In this work we consider exponentially fitted and trigonometrically fitted Runge-Kutta-Nyström methods. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions exp(wx), exp(−wx), or sin(wx), cos(wx), w∈ℜ. We modify existing RKN methods of fifth and sixth order. We apply these methods to the computation of the eigenvalues of the Schrödinger equation with different potentials as the harmonic oscillator, the doubly anharmonic oscillator and the exponential potential.  相似文献   

10.
In this paper, we implemented relatively new, exact series method of solution known as the differential transform method for solving linear and nonlinear Klein-Gordon equation. Several illustrative examples are given to demonstrate the effectiveness of the present method.  相似文献   

11.
In this paper we present a new kind of P-stable multistep methods for periodic initial-value problems. From the numerical results obtained by the new method to well-known periodic problems, show the superior efficiency, accuracy, stability of the method presented in this paper.  相似文献   

12.
In this paper, we derive a 6-point multisymplectic Preissman scheme for the regularized long-wave equation from its Bridges' multisymplectic form. Backward error analysis is implemented for the new scheme. The performance and the efficiency of the new scheme are illustrated by solving several test examples. The obtained results are presented and compared with previous methods. Numerical results indicate that the new multisymplectic scheme can not only obtain satisfied solutions, but also keep three invariants of motion very well.  相似文献   

13.
We present a method for solving a class of initial valued, coupled, non-linear differential equations with ‘moving singularities’ subject to some subsidiary conditions. We show that these types of singularities can be adequately treated by establishing certain ‘moving’ jump conditions across them. We show how a first integral of the differential equations, if available, can also be used for checking the accuracy of the numerical solution.  相似文献   

14.
We present a grid-based procedure to solve the eigenvalue problem for the two-dimensional Schrödinger equation in cylindrical coordinates. The Hamiltonian is discretized by using adapted finite difference approximations of the derivatives and this leads to an algebraic eigenvalue problem with a large (sparse) matrix, which is solved by the method of Arnoldi. By this procedure the single particle eigenstates of nuclear systems with arbitrary deformations can be obtained. As an application we have considered the emission of scission neutrons from fissioning nuclei.  相似文献   

15.
In this paper, new trigonometrically fitted Numerov type methods for the periodic initial problems are proposed. These methods are based on the original Numerov-type sixth order method with fifth internal stages motivated by Tsitouras (see [Ch. Tsitouras, Explicit Numerov type methods with reduced number of stages, Comput. Math. Appl. 45 (2003) 37-42]). Some parameters are added to these methods so that they can integrate exactly the combination of trigonometrically functions with two frequencies. Numerical stability and phase properties of the new methods are analyzed. Numerical experiments are carried out to show the efficiency and robustness of our new methods in comparison with the well known codes proposed in the scientific literature.  相似文献   

16.
We present a new implicit numerical discretization for the equations of radiation hydrodynamics (RHD) which is based on a more geometrical representation of a finite volume scheme suitable for spherical systems. In particular, the motion of the grid points is directly included by appropriate volume changes. Several examples illustrate the accuracy gained by this improved difference scheme.  相似文献   

17.
Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all).

Program summary

Program title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxialCatalogue identifier: AEDU_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 122 907No. of bytes in distributed program, including test data, etc.: 609 662Distribution format: tar.gzProgramming language: FORTRAN 77 and Fortran 90/95Computer: PCOperating system: Linux, UnixRAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix)Classification: 2.9, 4.3, 4.12Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems.Additional comments: This package consists of 12 programs, see “Program title”, above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below.Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix).

Program summary (1)

Title of program: imagtime1d.FTitle of electronic file: imagtime1d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (2)

Title of program: imagtimecir.FTitle of electronic file: imagtimecir.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (3)

Title of program: imagtimesph.FTitle of electronic file: imagtimesph.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 1 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (4)

Title of program: realtime1d.FTitle of electronic file: realtime1d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (5)

Title of program: realtimecir.FTitle of electronic file: realtimecir.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (6)

Title of program: realtimesph.FTitle of electronic file: realtimesph.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77Typical running time: Minutes on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (7)

Title of programs: imagtimeaxial.F and imagtimeaxial.f90Title of electronic file: imagtimeaxial.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (8)

Title of program: imagtime2d.F and imagtime2d.f90Title of electronic file: imagtime2d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 2 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (9)

Title of program: realtimeaxial.F and realtimeaxial.f90Title of electronic file: realtimeaxial.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time Hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (10)

Title of program: realtime2d.F and realtime2d.f90Title of electronic file: realtime2d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Hours on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

Program summary (11)

Title of program: imagtime3d.F and imagtime3d.f90Title of electronic file: imagtime3d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum RAM memory: 4 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Few days on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems.

Program summary (12)

Title of program: realtime3d.F and realtime3d.f90Title of electronic file: realtime3d.tar.gzCatalogue identifier:Program summary URL:Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandDistribution format: tar.gzComputers: PC/Linux, workstation/UNIXMaximum Ram Memory: 8 GByteProgramming language used: Fortran 77 and Fortran 90Typical running time: Days on a medium PCUnusual features: NoneNature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate.Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.  相似文献   

18.
A numerical procedure for an inverse problem of determination of unknown coefficients in a class of parabolic differential equations is presented. The approach of the proposed method is to approximate unknown coefficients by a piecewise linear function whose coefficients are determined from the solution of minimization problem based on the overspecified data. Some numerical examples are presented.  相似文献   

19.
The LP and CP methods are two versions of the piecewise perturbation methods to solve the Schrödinger equation. On each step the potential function is approximated by a constant (for CP) or by a linear function (for LP) and the deviation of the true potential from this approximation is treated by the perturbation theory.This paper is based on the idea that an LP algorithm can be made faster if expressed in a CP-like form. We obtain a version of order 12 whose two main ingredients are a new set of formulae for the computation of the zeroth-order solution which replaces the use of the Airy functions, and a convenient way of expressing the formulae for the perturbation corrections. Tests on a set of eigenvalue problems with a very big number of eigenvalues show that the proposed algorithm competes very well with a CP version of the same order and is by one order of magnitude faster than the LP algorithms existing in the literature. We also formulate a new technique for the step width adjustment and bring some new elements for a better understanding of the energy dependence of the error for the piecewise perturbation methods.  相似文献   

20.
Based on the homotopy analysis method (HAM), an efficient approach is proposed for obtaining approximate series solutions to fourth order two-point boundary value problems. We apply the approach to a linear problem which involves a parameter c and cannot be solved by other analytical methods for large values of c, and obtain convergent series solutions which agree very well with the exact solution, no matter how large the value of c is. Consequently, we give an affirmative answer to the open problem proposed by Momani and Noor in 2007 [S. Momani, M.A. Noor, Numerical comparison of methods for solving a special fourth-order boundary value problem, Appl. Math. Comput. 191 (2007) 218-224]. We also apply the approach to a nonlinear problem, and obtain convergent series solutions which agree very well with the numerical solution given by the Runge-Kutta-Fehlberg 4-5 technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号