首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
The combined dynamics of swirler and turbulent premixed swirling flames   总被引:8,自引:0,他引:8  
The dynamics of premixed confined swirling flames is investigated by examining their response to incident velocity perturbations. A generalized transfer function designated as the flame describing function (FDF) is determined by sweeping a frequency range extending from 0 to 400 Hz and by changing the root mean square fluctuation level between 0% and 72% of the bulk velocity. The unsteady heat release rate is deduced from the emission intensity of OH* radicals. This global information is complemented by phase conditioned Abel transformed emission images. This processing yields the distribution of light emission. By assuming that the light intensity is proportional to the heat release rate, it is possible to deduce the distribution of unsteady heat release rate in W m−3 and see how it evolves with time during the modulation cycle and for different forcing frequencies. These data can be useful for the determination of regimes of instability but also give clues on the mechanisms which control the swirling flame dynamics. It is found from experiments and demonstrated analytically that a swirler submitted to axial acoustic waves originating from the upstream manifold generates a vorticity wave on its downstream side. The flame is then submitted to a transmitted axial acoustic perturbation which propagates at the speed of sound and to an azimuthal velocity perturbation which is convected at the flow velocity. The net result is that the dynamical response and unsteady heat release rate are determined by the combined effects of these axial and induced azimuthal velocity perturbations. The former disturbance induces a shedding of vortices from the injector lip which roll-up the flame extremity while the latter effectively perturbs the swirl number which results in an angular oscillation of the flame root. This motion is equivalent to that which would be induced by perturbations of the burning velocity. The phase between incident perturbations is controlled by the convective time delay between the swirler and the injector. The constructive or destructive interference between the different perturbations is shown to yield the low and high gains observed for certain frequencies.  相似文献   

2.
Non-premixed acoustically perturbed swirling flame dynamics   总被引:1,自引:0,他引:1  
An investigation into the response of non-premixed swirling flames to acoustic perturbations at various frequencies (fp = 0-315 Hz) and swirl intensities (= 0.09 and 0.34) is carried out. Perturbations are generated using a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes |u′/Uavg| in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. Flame heat release rate is quantitatively measured using a photomultiplier with a 430 nm bandpass filter for observing CH∗ chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. The flame response is observed to exhibit a low-pass filter characteristic with minimal flame response beyond pulsing frequencies of 200 Hz. Flames at lower fuel flow rates are observed to remain attached to the central fuel pipe at all acoustic pulsing frequencies. PIV imaging of the associated isothermal fields show the amplification in flame aspect ratio is caused by the narrowing of the inner recirculation zone (IRZ). Good correlation is observed between the estimated flame surface area and the heat release rate signature at higher swirl intensity flame configurations. A flame response index analogous to the Rayleigh criterion in non-forced flames is used to assess the potential for a strong flame response at specific perturbation configurations and is found to be a good predictor of highly responsive modes. Phase conditioned analysis of the flame dynamics yield additional criteria in highly responsive modes to include the effective amplitude of velocity oscillations induced by the acoustic pulsing. In addition, highly responsive modes were characterized by velocity to heat release rate phase differences in the ±π/2 range. A final observed characteristic in highly responsive flames is a Strouhal number between 1 and 3.5 based on the burner co-flow annulus diameter (St fpUavg/dm). Finally, wavelet analyses of heat release rate perturbations indicate highly responsive modes are characterized by sustained low frequency oscillations which accompany the high amplitude velocity perturbations at these modes. Higher intensity low frequency heat release rate oscillations are observed for lean flame/low pulsing frequency conditions.  相似文献   

3.
When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame’s base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames.  相似文献   

4.
The flow around a stationary axisymmetric premixed flame attached to a plug flow Bunsen burner and propagating with a constant burning velocity relative to the fresh gas is analyzed for large values of the ratio of fresh gas injection velocity to flame burning velocity and small values of the burnt-to-fresh gas density ratio. The shape of the flame is close to a cone of small semiangle, and its presence induces only a small perturbation in the fresh gas. The velocity of the burnt gas is the superposition of a uniform axial velocity and the velocity induced by a line of sources on the axis of the burner. The pressure of the burnt gas on the flame is the sum of a uniform part that does not change the velocity of the fresh gas and a small variable part that causes a vertical acceleration of this gas and a slight deformation of the flame. Only a weak vorticity is generated at the flame. The analysis breaks down in small regions around the tip and the base of the flame where the assumption of a constant burning velocity is not valid.  相似文献   

5.
This paper investigated the hydrogen enriched methane/air flames diluted with CO2. The turbulent premixed flame was stabilized on a Bunsen type burner and the two dimensional instantaneous OH profile was measured by Planar Laser Induced Fluorescence (PLIF). The flame front structure characteristics were obtained by extracting the flame front from OH-PLIF images. And the turbulence-flame interaction was analyzed through the statistic parameters. The role of hydrogen addition as well as CO2 dilution on the features of turbulent flame were revealed by those parameters. In this work, hydrogen fractions of 0, 0.2 and CO2 dilution ratios of 0, 0.05 and 0.1 were studied. Results showed that hydrogen addition can enhance turbulent burning velocity ST/SL through decreasing the scale of the finer structure of the wrinkled flame front, caused by the smaller flame instability scale. In contrast, CO2 dilution decreased turbulent burning velocity ST/SL due to its inactive response to turbulence perturbation and larger flame wrinkles. For all flames, the probability density function (PDF) profile of the local curvature radius R shows a bias to positive value, resulted from the flame intrinsic instability. The PDF profile of R decreases with CO2 dilution, while the value of local curvature radius corresponding to the peak PDF is larger. This indicates that larger wrinkles structure was generated due to CO2 dilution, which leads to the decrease in ST/SL as a consequence. Hydrogen addition increases the flame volume and results in more intense combustion. CO2 dilution has a decrease effect on flame volume for both XH2 = 0 and XH2 = 0.2 while the decrease is obvious at XH2 = 0.2, ZCO2 = 0.1. In all, hydrogen enrichment improves the combustion while CO2 can moderate combustion. Therefore, adding hydrogen and CO2 in natural gas can be a potential method for adjusting the combustion intensity in combustion chamber during the combustor design.  相似文献   

6.
Flame shapes and their transitions of premixed hydrogen enriched methane flames in a 3D-printed low-swirl burner are studied using simultaneous OH×CH2O planar laser induced fluorescence and stereoscopic particle image velocimetry. Three different flame shapes are observed, namely bowl-shape, W-shape, and crown-shape. The bowl-shaped flame has its base stabilized through flame-flow velocity balance and its sides stabilized in the inner shear layer. While the bulges of the W-shaped flame rely on a similar stabilization mechanism in the central flow, its outer edges are stabilized by large-scale eddies in the outer shear layer. The crown-shaped flame is also aerodynamically stabilized in the center, but its outer edges are anchored to the burner hardware. At a fixed equivalence ratio, the statistical transitions between flame shapes across test conditions are jointly dominated by hydrogen fraction and bulk velocity. Dynamically, W-to-crown transition is attributed to the upstream propagation and attachment of the flame outer edges.  相似文献   

7.
8.
Swirl effects on harmonically excited,premixed flame kinematics   总被引:1,自引:0,他引:1  
This paper describes the response of a swirling premixed flame with constant burning velocity to non-axisymmetric harmonic excitation. This work extends prior studies of axisymmetric forcing, which have shown that wrinkles are excited on the flame that propagate downstream along the mean flame surface at a speed given by Uo cos ψ, where Uo is the mean flow velocity and ψ is the flame angle. The swirl component in the flow field introduces an azimuthal transport mechanism for disturbances on the flame. As such, the flame response at any given position is a superposition of flame wrinkles excited at earlier times, upstream axial locations, and different azimuthal positions. These swirl transport effects do not arise in problems where axisymmetric flames are subjected to axisymmetric excitation, but enter quite prominently in the presence of non-axisymmetries, such as when the flame is subjected to transverse excitation. The solution characteristics are strongly dependent upon the ratio of angular rotation rate to excitation frequency, denoted by σ = Ω/ω, which describes the fraction of azimuthal rotation a disturbance makes in one acoustic period. When σ ? 1 and σ ? 1, the axial wavelength of flame wrinkles scales with the convective wavelength, λc, but becomes much longer for σ  O(1). The spatial variation in phase of flame wrinkling is also strongly dependent upon σ. Regardless of swirl number, flame wrinkles propagate in helical spirals along the solution characteristics at a phase speed equal to the local tangential velocity. The axial phase characteristics of flame wrinkling at a fixed azimuthal location, as would be measured by laser sheet imaging, are much more complex. For σ < 1, the wrinkles exhibit the familiar negative roll-off character for the phase with axial downstream distance, indicative of an axially convecting disturbance. The slope of this phase roll-off decreases with increasing σ, however, and becomes zero at σ = 1 for a compact flame. For σ > 1, the wrinkles actually have a positive roll-off character for the phase with axial downstream distance, indicating a flame wrinkle with a negative trace velocity, but whose actual propagation velocity is positive. Finally, these results show that while the flame response to transverse acoustic excitation is quite strong locally, its spatially integrated effect is much smaller for acoustically compact flames. This suggests that the dominant mechanism through which the flame responds globally to transverse excitation is the induced vortical and longitudinal acoustic fluctuations.  相似文献   

9.
This study examines the influence of vortex core precession on flame flashback of swirl-stabilised hydrogen flames. Theoretical considerations suggest that the angular velocity of a swirling flow is reduced as vortex precession causes it to acquire an eccentric motion around the central axis of the burner. The eccentric motion of the vortex generates a secondary flow, which is thought to reduce the angular velocity and tangential momentum available to the primary flow, and thereby reduce the flashback propensity at the centre of the vortex core. Experiments measuring the influence of the eccentric motion of the flame tip on flame flashback behaviour were conducted using high-speed sequences of OH*-chemiluminescence images. Temporal analysis of a large sample of images revealed the existence of a systematic rotational frequency of the flame tip around the central axis of the burner. Analysis of the radial position of the flame tip in relation to its axial propagation velocity showed that flashback velocity increased as the flame tip eccentricity approached zero and flashback velocity decreased as the eccentricity amplitude of the flame tip reached larger values. This suggested that flame eccentricity caused by vortex core precession may be detrimental to upstream flame propagation and may be effective in inhibiting flame flashback in swirl-stabilised flames.  相似文献   

10.
The flame brush characteristics and turbulent burning velocities of premixed turbulent methane/air flames stabilized on a Bunsen-type burner were studied. Particle image velocimetry and Rayleigh scattering techniques were used to measure the instantaneous velocity and temperature fields, respectively. Experiments were performed at various equivalence ratios and bulk flow velocities from 0.7 to 1.0, and 7.7 to 17.0 m/s, respectively. The total turbulence intensity and turbulent integral length scale were controlled by the perforated plate mounted at different positions upstream of the burner exit. The normalized characteristic flame height and centerline flame brush thickness decreased with increasing equivalence ratio, total turbulence intensity, and longitudinal integral length scale, whereas they increased with increasing bulk flow velocity. The normalized horizontal flame brush thickness increased with increasing axial distance from the burner exit and increasing equivalence ratio. The non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional turbulence intensity, and they decreased with increasing non-dimensional bulk flow velocity when other turbulence statistics were kept constant. Results show that the non-dimensional leading edge and half-burning surface turbulent burning velocities increased with increasing non-dimensional longitudinal integral length scale. Two correlations to represent the leading edge and half-burning surface turbulent burning velocities were presented as a function of the equivalence ratio, non-dimensional turbulence intensity, non-dimensional bulk flow velocity, and non-dimensional longitudinal integral length scale. Results show that the half-burning surface turbulent burning velocity normalized by the bulk flow velocity decreased as the normalized characteristic flame height increased.  相似文献   

11.
12.
13.
This study reports on a joint experimental and analytical study of premixed laminar flames impinging onto a plate at controlled temperature, with special emphasis on the study of periodically oscillating flames. Six types of flame structures were found, based on parametric variations of nozzle-to-plate distance (H), jet velocity (U), and equivalence ratio (?). They were classified as conical, envelope, disc, cool central core, ring, and side-lifted flames. Of these, the disc, cool central core, and envelope flames were found to oscillate periodically, with frequency and sound pressure levels increasing with Re and decreasing with nozzle-to-plate distance. The unsteady behavior of these flames was modeled using the formulation derived by Durox et al. [D. Durox, T. Schuller, S. Candel, Proc. Combust. Inst. 29 (2002) 69-75] for the cool central core flames where the convergent burner acts as a Helmholtz resonator, driven by an external pressure fluctuation dependent on a velocity fluctuation at the burner mouth after a convective time delay τ. Based on this model, the present work shows that
  相似文献   

14.
The interaction of a helical mode with acoustic oscillations is studied experimentally in a turbulent swirl-stabilized premixed flame. In addition to a precessing vortex core (PVC), the helical mode features perturbations in the outer shear layer of the burner flow. Measurements of the acoustic pressure, unsteady velocity field and flame emission are made in different regimes including self-sustained combustion oscillations and stable regimes with and without acoustic forcing. The acoustic oscillation and the helical mode create a pronounced rotating heat release rate perturbation at a frequency corresponding to the difference of the frequencies of the two individual mechanisms. Measurements over a wide range of operating conditions for different flow rates and equivalence ratios show that while the helical mode is always present, with a constant Strouhal number, self-excited thermoacoustic oscillations exist only in a narrow region. The interaction can be observed also in cases of thermoacoustically stable conditions when external acoustic modulation is applied to the system. The evolution of the helical mode with the forcing amplitude is examined. High-speed imaging from the downstream side of the combustor demonstrates that the heat release rate perturbation associated with the nonlinear interaction of the helical mode and the acoustic oscillations produces a ”yin and yang” -type pattern rotating with the interaction frequency in the direction of the mean swirl. At unstable conditions, the oscillation amplitude associated with the interaction is found to be significantly stronger in the heat release rate than in the velocity signal, indicating that the nonlinear interaction primarily occurs in the flame response and not in the aerodynamic field. The latter is, however, generally possible as is demonstrated under non-reacting conditions with acoustic forcing. Based on a second-order analysis of the G-equation, it is shown that the nonlinear flame dynamics necessarily generate the observed interaction component if the flame is simultaneously perturbed by a helical mode and acoustic oscillations.  相似文献   

15.
应用颗粒动态分析仪测定了富集型煤粉燃烧器浓股出口加置锯齿型稳燃器前后的三维湍流速度场.试验结果表明,加置锯齿型稳燃器后,浓股气流在喷口附近的出口速度在三维方向上皆呈明显的波浪形分布,平均速度和脉动速度都有所增大,轴向平均速度衰减迅速,轴向脉动速度衰减延迟,水平径向和垂直径向的脉动明显增强.试验说明,锯齿型出口结构改善了喷口附近的气固流场,增大煤粉颗粒的局部空间浓度,增强气固混合,可以提高燃烧器着火稳燃和低NOx排放控制性能.  相似文献   

16.
Fuel processing system which converts hydrocarbon fuel into hydrogen rich gas (by stream reforming, partial oxidation, auto-thermal reforming) needs high temperature environment (600-1000 °C). Generally, anode off gas or mixture of anode off gas and LNG are used as input gas for a fuel reformer. In order to constitute efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristics of fuel reformer burner. In this study, lean flat flame using the ceramic porous burner was analyzed numerically and experimentally. Burning velocity of anode off gas calculated by CHEMKIN simulation was 51.8 cm, which was faster than that of LNG having 40.63 cm/s at the stoichiometric ratio because of high composition of hydrogen in anode off gas. As composition of LNG in mixture of anode off gas + LNG is increased, the burning velocity decreases and in the other hand the adiabatic temperature increases. CO, NOx were measured below 50 ppm in operating load range of the reformer. Blue flame pattern was found as stable flame region for design of fuel reformer and anode off gas flame was maintained in blue flame pattern at equivalence ratio 0.55-0.62 under 1-5 kW power range.  相似文献   

17.
18.
The stability of methane/air and hydrogen/air flames in an axisymmetric counterflow burner was investigated experimentally for different burner geometries, degrees of fuel dilution, and combinations of flow velocities. Both planar diffusion flames and edge flames were observed, and the transitions between these flame types were studied. The experimental results confirmed previously published numerical predictions on diluted hydrogen/air flames: the existence of two distinct stable flame types; the possibility of switching between the two flame types by perturbing the flames, e.g., by suitably changing a flow velocity; and the strong hysteresis for the transition from one flame type to the other. Flame stability diagrams were compiled which delineate the range of fuel and air flow velocities for which the planar diffusion flame and the toroidal edge flame are stable. The lower boundary curve for the edge flame stability exhibits a characteristic minimum at a well-defined value of the fuel velocity. For fuel velocities lower than this value, the transition between the edge and the diffusion structure is reversible, and the flames exhibit bistable behavior. For higher fuel velocities, the decrease of air velocity leads to the extinction of the edge flame. An investigation of both the cold and the reactive flow field identified bistable behavior for the flow field as well. Except for very low flow rates, the stagnation plane stabilizes in two positions, close to either of the two nozzles. Detailed numerical simulations of hydrogen flames capture the essentials of this behavior. The observed flame extinction results from the interaction of the flame dynamics with the dynamics of the flow field.  相似文献   

19.
20.
A theoretical study on Bunsen spray flames   总被引:2,自引:0,他引:2  
The structure of Bunsen flame tip under the influence of dilute, monodisperse inert (water) or fuel (methanol) sprays is theoretically studied using large activation energy asymptotics. A completely prevaporized mode is identified, in which no liquid droplets exist downstream of the flame. Parameters for open and closed flame tips in the analysis consist of the amount of liquid loading indicating the internal heat loss for the water spray or the internal heat loss and heat gain for the rich and lean methanol-sprays, respectively, and the (negative) stretch coupled with Lewis number (Le) which strengthens the burning intensity of the Le>1 flame but weakens that of the Le<1 flame, respectively. For rich methane-air flames (Le>1) with water sprays (or lean methanol-spray flames with Le>1), closed-tip solutions are obtained. The burning intensity of the flame tip is enhanced with either decreasing liquid-water loading (or increasing liquid-fuel loading) or increasing stretch. Conversely, the negative stretch weakens the burning intensity of a lean methane-air flame (Le<1) with water sprays (or a rich methanol-spray flame with Le<1) and eventually leads to tip opening, i.e., flame extinction. The burning intensity is further reduced with either increasing liquid-water (or liquid-fuel) loading or increasing stretch. Moreover, the open flame tip is further widened when either the liquid-water loading (or liquid-fuel loading) or the upstream flow velocity is increased. It is noteworthy that the gradual increase of liquid-fuel loading strengthens the burning intensity of the lean methanol-spray flame (Le>1) and thus leads to the transition of flame configurations from conventional Bunsen cone through planar flame to inverted flame cone (a convex flame shape with respect to the upstream reactants). The critical value of liquid-fuel loading, at which there exists a planar flame rather than a Bunsen cone flame, is increased with either increasing upstream flow velocity or decreasing equivalence ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号