首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90° to 70°, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90° injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75° a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.  相似文献   

3.
In this paper, we explore the effects of heat release on mixing and flow structure in a high-speed subsonic turbulent H2 jet in an air coflow. Heat release effects are determined from the comparison of nonreacting and reacting jet behavior, boundary conditions being identical in both cases. Experiments are performed in a wind tunnel specifically designed for this purpose. Planar laser induced fluorescence on OH radicals and on acetone (seeded in the hydrogen jet) are used to characterize the cartography of scalars, and laser Doppler velocimetry is used to characterize velocity profiles in the far field of the H2 jet. Results show significant effects of heat release on mixing and flow structure, indicating an overall reduction of mixing and entrainment in the reacting jet compared to the nonreacting jet. First, a change is observed in the orientation of coherent structures originating from Kelvin-Helmholtz type instabilities, and responsible for air entrainment within the jet, which appear “flatter” in the jet flame. Then, the flame length is increased over what would be predicted from the intersection of the mean stoichiometric contour with the centerline of the nonreacting jet. And finally, the longitudinal average velocity decrease along the jet axis is quicker in the nonreacting jet, and nondimensional transverse velocity fluctuations are about half as high in the reacting jet as in the nonreacting jet, indicating a reduction of the turbulence intensity of the flow in this direction in the jet flame.  相似文献   

4.
5.
A critical review and rethinking of hydrogen jet flame research is carried out. Froude number only based correlations are shown to be deficient for under-expanded jet fires. The novel dimensionless flame length correlation is developed accounting for effects of Froude, Reynolds, and Mach numbers. The correlation is validated for pressures 0.1–90.0 MPa, temperatures 80–300 K, and leak diameters 0.4–51.7 mm. Three distinct jet flame regimes are identified: traditional buoyancy-controlled, momentum-dominated “plateau” for expanded jets, and momentum-dominated “slope” for under-expanded jets. The statement “calculated flame length may be obtained by substitution the concentration corresponding to the stoichiometric mixture in equation of axial concentration decay for non-reacting jet” is shown to be incorrect. The correct average value for non-premixed turbulent flames is 11% by volume of hydrogen in air (range 8%–16%) not stoichiometric 29.5%. All three conservative separation distances for jet fire are shown to be longer than separation distance for non-reacting jet.  相似文献   

6.
The three principal theories for the stabilization of lifted flames on turbulent jets of fuel are reviewed in the light of the most recent flame imaging experiments in the literature. Most of these experiments have been conducted with a small co-flow of air, but the observations are relevant to lift-off with higher ratios of co-flowing air to fuel jet velocity. The similarity solutions for jets in co-flow are developed, and data from a variety of fluid dynamic sources are assessed to yield the governing parameters for mean flow, turbulence and mixture fraction. New data for lifted flames on a methane jet in diffusing streams of co-flowing air are then presented. These data provide essential information on the intermittency, and on the properties of the jet conditioned on the presence of turbulent fluid. However, the co-flow lifts the flame to stabilize in better-mixed regions than in its absence. The ‘premixture’ model is confirmed for this situation, in which the lift-off heights were more than 20 jet diameters and where there is little intermittency at the stabilization radius. Nevertheless, mixing data for this geometry in the absence of a flame show that, with lift-off heights less than 20 jet diameters, the base of the flame would have been in the outer regions of the jet where the mixture of fuel in air only reaches stoichiometric proportions intermittently, with the passage of large eddies. Trading on many papers from the recent literature where this was the case, both experimental and computational insights as to the processes in this region are reviewed. A question remains about how ignition is maintained in these experiments with low turbulent lift-off. It is hypothesized that the mechanism is the diffusive heating of the slowly moving surrounding air which then provides an energy store for the incoming eddies. Further time-resolved observations of reaction zone and high temperature gas structure are required to test this model.  相似文献   

7.
The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529–551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263–274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259–272].  相似文献   

8.
The stability characteristics of a premixed, swirl-stabilized flame were studied to determine the effects of hydrogen addition on flame stability under fuel-lean conditions. The burner configuration consisted of a centerbody with an annular, premixed methane/air jet introduced through five, 45° swirl vanes. Flame stability was studied over a range of operating conditions. Under fuel-rich conditions the flame was lifted from the burner surface due to the mixing with entrained ambient air that was needed to form a flammable mixture. As the fuel/air mixture ratio was decreased toward stoichiometric, the resulting increase in flame speed allowed the flame to propagate upstream through the low-velocity wake region and attach to the centerbody face. The maximum blowout velocity occurred at stoichiometric conditions, and decreased as the mixture became leaner. OH PLIF measurements were used to study the behavior of OH mole fraction as the lean stability limit was approached. Near the lean stability limit the overall OH mole fraction decreased, the flame decreased in size and the high OH region took on a more shredded appearance. The addition of up to 20% hydrogen to the methane/air mixture resulted in a significant increase in the OH concentration and extended the lean stability limits of the burner.  相似文献   

9.
Methane-air partially premixed flames subjected to grid-generated turbulence are stabilized in a two-slot burner with initial fuel concentration differences leading to stratification across the stoichiometric concentration. The fuel concentration gradient at the location corresponding to the flame base is measured using planar laser induced fluorescence (PLIF) of acetone in the non-reacting mixing field. Simultaneous PLIF of the OH radical and particle image velocimetry (PIV) measurements are performed to deduce the flow velocity and the flame front. These flames exhibit a convex premixed flame front and a trailing diffusion flame, with flow divergence upstream of the flame, as indicated by the instantaneous OH–PLIF, Mie scattering images, and PIV data. The mean streamwise velocity profile attains a global minimum just upstream of the flame front due to expansion of a gases caused by heat release. The flame speed measured just upstream of the flame leading edge is normalized with respect to the turbulent stoichiometric flame speed that takes into account variations in turbulent intensity and integral length scale. The turbulent edge flame speed exceeds the corresponding stoichiometric premixed flame speed and reaches a peak at a certain concentration gradient. The mean tangential strain at the flame leading edge locally peaks at the concentration gradient corresponding to the peak flame speed. The strain varies non-monotonically with the flame curvature unlike in a non-stratified curved premixed flame. The mechanism of peak flame speed is explained as the competition between availability of hot excess reactants from the premixed flame branches to the flame stretch induced due to flame curvature. The results suggest that the stabilization of lifted turbulent partially premixed flames occurs through an edge flame even at a relatively gentle concentration gradient. The strain is also evaluated along the flame front; it peaks at the flame leading edge and decreases gradually on either side of the leading edge. The present results also show qualitatively similar trends as those of laminar triple flames.  相似文献   

10.
The stabilization and dynamics of lean (φ=0.5) premixed hydrogen/air atmospheric-pressure flames in planar microchannels of prescribed wall temperature are investigated with respect to the inflow velocity and channel height (0.3 to 1.0 mm) using direct numerical simulation with detailed chemistry and transport. Rich dynamics starting from periodic ignition and extinction of the flame and further transitioning to symmetric V-shaped flames, asymmetric flames, oscillating and pulsating flames, and finally again to asymmetric flames are observed as the inlet velocity is increased. The richest behavior is observed for the 1.0-mm-height channel. For narrower channels, some of the dynamics are suppressed. The asymmetric flames, in particular, vanish for channel heights roughly less than twice the laminar flame thickness. Stability maps delineating the regions of the different flame types in the inlet velocity/channel height parameter space are constructed.  相似文献   

11.
Lifted methane-air jet flames in a vitiated coflow   总被引:4,自引:0,他引:4  
The present vitiated coflow flame consists of a lifted jet flame formed by a fuel jet issuing from a central nozzle into a large coaxial flow of hot combustion products from a lean premixed H2/air flame. The fuel stream consists of CH4 mixed with air. Detailed multiscalar point measurements from combined Raman-Rayleigh-LIF experiments are obtained for a single base-case condition. The experimental data are presented and then compared to numerical results from probability density function (PDF) calculations incorporating various mixing models. The experimental results reveal broadened bimodal distributions of reactive scalars when the probe volume is in the flame stabilization region. The bimodal distribution is attributed to fluctuation of the instantaneous lifted flame position relative to the probe volume. The PDF calculation using the modified Curl mixing model predicts well several but not all features of the instantaneous temperature and composition distributions, time-averaged scalar profiles, and conditional statistics from the multiscalar experiments. A complementary series of parametric experiments is used to determine the sensitivity of flame liftoff height to jet velocity, coflow velocity, and coflow temperature. The liftoff height is found to be approximately linearly related to each parameter within the ranges tested, and it is most sensitive to coflow temperature. The PDF model predictions for the corresponding conditions show that the sensitivity of flame liftoff height to jet velocity and coflow temperature is reasonably captured, while the sensitivity to coflow velocity is underpredicted.  相似文献   

12.
The effects of a proposed combustion technique, named as annular counterflow, on the enhancement of jet diffusion flame blowout limits were investigated by a series of experiments conducted for the present study. Annular counterflow was formed in a concentric annulus, in which fuel jet was ejected from a nozzle and air was sucked into an outer cylinder encompassing the nozzle. Three fuel nozzles and outer cylinders of different sizes were utilized to perform the experiments. Schlieren technique and normal video filming were employed for the visualization of diverse flame morphologies triggered by the said flow. Gas samplings were taken and scrutinized by the use of a gas chromatograph. Results showed that the blowout limits can be enhanced dramatically by an increase in volume flow rates of air‐suction. Mixing enhancement is achieved with frequent and strong outward ejection of fluids from the cold jet when this technique is applied. The blowout limits are further extended when the diameter of outer cylinders becomes smaller and/or that of the fuel nozzle becomes larger. The base widths of lifted flames were found to be narrower in the interim of annular counterflow application. The rates of increase in flame lift‐off heights and base widths along with an increase in fuel flow velocities become sluggish when the volume flow rates of air are increased. The amount of fuel that was sucked into the outer cylinder was found to be negligible and trivial. A model based on annular and coaxial jet was developed to predict the lifted flame base width and blowout limits. The coincidence between the prediction and experimental results unambiguously validates that the momentum of air‐suction dominates the beneficial effect. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
《Combustion and Flame》2001,124(1-2):311-325
We have investigated lifted triple flames and addressed issues related to flame stabilization. The stabilization of nonpremixed flames has been argued to result due to the existence of a premixing zone of sufficient reactivity, which causes propagating premixed reaction zones to anchor a nonpremixed zone. We first validate our simulations with detailed measurements in more tractable methane–air burner-stabilized flames. Thereafter, we simulate lifted flames without significantly modifying the boundary conditions used for investigating the burner-stabilized flames. The similarities and differences between the structures of lifted and burner-stabilized flames are elucidated, and the role of the laminar flame speed in the stabilization of lifted triple flames is characterized. The reaction zone topography in the flame is as follows. The flame consists of an outer lean premixed reaction zone, an inner rich premixed reaction zone, and a nonpremixed reaction zone where partially oxidized fuel and oxidizer (from the rich and lean premixed reaction zones, respectively) mix in stoichiometric proportion and thereafter burn. The region with the highest temperatures lies between the inner premixed and the central nonpremixed reaction zone. The heat released in the reaction zones is transported both upstream (by diffusion) and downstream to other portions of the flame. Measured and simulated species concentration profiles of reactant (O2, CH4) consumption, intermediate (CO, H2) formation followed by intermediate consumption and product (CO2, H2O) formation are presented. A lifted flame is simulated by conceptualizing a splitter wall of infinitesimal thickness. The flame liftoff increases the height of the inner premixed reaction zone due to the modification of the upstream flow field. However, both the lifted and burner-stabilized flames exhibit remarkable similarity with respect to the shapes and separation distances regarding the three reaction zones. The heat-release distribution and the scalar profiles are also virtually identical for the lifted and burner-stabilized flames in mixture fraction space and attest to the similitude between the burner-stabilized and lifted flames. In the lifted flame, the velocity field diverges upstream of the flame, causing the velocity to reach a minimum value at the triple point. The streamwise velocity at the triple point is ≈0.45 m s−1 (in accord with the propagation speed for stoichiometric methane–air flame), whereas the velocity upstream of the triple point equals 0.7 m s−1, which is in excess of the unstretched flame propagation speed. This is in agreement with measurements reported by other investigators. In future work we will address the behavior of this velocity as the equivalence ratio, the inlet velocity profile, and inlet mixture fraction are changed.  相似文献   

14.
Local propagation speeds and stretch rates were measured along a premixed flame that undergoes unsteady wrinkling in order to see if these two quantities correlate in the manner that is predicted by the theory of flame stretch. The Markstein number, which relates these two quantities, also was measured. Previous studies had considered the simple geometries of counterflow or spherical flames, but in this case a complex geometry was generated by interacting a flame with a vortex, such that both the strain and curvature components of the stretch rate are present. The diagnostics used were shadowgraph movies and simultaneous particle imaging velocimetry and OH planar laser-induced fluorescence. The overall conclusion is that the theory of flame stretch remains valid for these unsteady complex conditions, because the measured trends are found to be in agreement with trends predicted by the theory. That is, propagation speeds decrease at locations where positive stretch is applied to stable (lean propane-air and rich methane-air) flames. Conversely, propagation speeds increase where positive stretch was applied to unstable (lean methane-air) flames. The shape of the profiles of propagation speed along stable flames is opposite to that of unstable flames, as is predicted by the theory. However, values of Markstein number show large variations and are much larger than that of an outwardly propagating spherical flame. Negative strain regions are of particular interest because they previously had not been studied experimentally; these regions yield the largest propagation speeds for the stable cases and some negative speeds for the unstable cases.  相似文献   

15.
Partially premixed combustion is involved in many practical applications, due to partial premixing of combustible and oxidant gases before ignition, or due to local extinctions, which lead to mixing of reactants and burned gases. To investigate some features of flames in stratified flows, the stabilization processes of lifted turbulent jet flames are studied. This work offers a large database of liftoff locations of flames stabilized on turbulence-free jets for different fuels and nozzle diameters studied over their flame stability domains. Methane, propane, and ethylene flames are investigated for nozzle diameters of 2, 3, 4, and 5 mm. Blowout velocities are measured and compared with an approach based on large-scale structures of the jet. The axial and radial locations of the flame base are measured by planar laser-induced fluorescence (PLIF) of the OH radical through high sampling (at least 5000 points). From this large database the average locations of the flame base are analyzed for the fuels investigated. The pdfs exhibit an evolution of their shapes according to the region of the turbulent jet where the flame stabilizes (potential core, transition to turbulence, or fully developed turbulence regions). This dependence is probably due to the interaction of the flame with the jet structures. This is confirmed by the comparison between the amplitude of the height fluctuations and the local size of the large-scale structures deduced from particle image velocimetry measurements and self-similarity laws for velocity. The results show the flame can be carried over a distance equal to the local diameter of the jet within the region of fully developed turbulence for propane and ethylene, and over a slightly larger distance for methane.  相似文献   

16.
The operating range of lean-burn SI engines is limited by the level of cycle-by-cycle variability in the early flame development, which typically corresponds to the 0-5% mass fraction burned. An experimental investigation was undertaken to study this flame variability in an optical, stratified-charge, SI engine close to the lean limit of stable operation (A/F=22). Double-exposed flame images acquired through either a pentroof window (“tumble plane” of view) or the piston crown (“swirl plane” of view) were processed to calculate the intra-cycle flame growth and convection rates under 1500 RPM low-load conditions. Projected flame-boundary analysis was also performed to investigate the effect of flame shape/wrinkling on the subsequent timing of 5% mass fraction burned on a cycle-by-cycle basis. The images showed that the flame always preserved its shape while growing in size (even when it had been initiated with a highly convoluted shape); image processing demonstrated the manner with which the flame-growth speed varied as the flame propagated and approached the pentroof and piston-crown walls for slow, “typical” or fast burning cycles. It was found that it was beneficial to have a high convection velocity in the swirl plane of flow during the first 10° CA after ignition timing (corresponding to less than 0.1% mass fraction burned), but after this stage it was beneficial to have a moderate convection velocity for the flame. However, on the tumble plane of flow, a high convection velocity was preferable up to 30° CA after ignition timing (corresponding, typically, to 1% mass fraction burned). Slow development of a flame was associated with higher stretch rates for the same flame radius than fast-developing flames during the period of growth from 3 to 6 mm in radius (about 0.1-1% mass fraction burned). Extended analysis of the projected flame front's shape and its wrinkling showed that the fastest lean-condition flames had contour characteristics similar to those of the flames recorded for stoichiometric conditions. This suggested that the fastest lean flames on a cycle-by-cycle basis might have been richer than the average in the vicinity of the spark plug at ignition.  相似文献   

17.
采用直接数值模拟方法对二甲醚(Dimethyl Ether,DME)射流推举燃烧进行了研究(DNS),分析了DME射流推举火焰结构、燃烧模式和推举稳定机理。数值模拟工况条件为:燃料由狭缝射出,初始温度500 K,射流速度138 m/s;伴流空气的初始温度1 000 K,流速3 m/s,压力为0506 6 MPa。研究表明:DME射流推举火焰与传统的边火焰有很大不同,在射流核心区内存在1条低温放热分支以及紧随其后的中温着火分支,并且推举稳定点位于贫燃侧;DME湍流射流推举火焰包含冷焰反应区(Cool Flame Zone,CFZ)、中温反应区(Intermediate Temperature Zone,ITZ)、富燃高温区(High Temperature Rich Burn Zone,HTR)以及贫燃高温区(High Temperature Lean Burn Zone,HTL)4种模式;在CFZ与ITZ区内湍流混合占主导,并且湍流混合会抑制低温放热;在HTR与HTL区内放热速率占主导地位,但是湍流会显著增强超贫燃区间内的高温放热速率;大部分热量在HTL和HTR区产生,而CFZ和ITZ区对总体产热的贡献微乎其微,但是所产生的中低温组分加快了高温着火过程;射流推举稳定性由贫燃侧的高温自着火反应机制所控制。  相似文献   

18.
Relationships between flame lift-off heights and reservoir pressure were experimentally investigated in order to clarify blow-off process of hydrogen non-premixed jet flames with a highly under-expanded jet structure. In this study, straight nozzles with diameters of 0.34, 0.53, 0.75 and 1.12 mm were used with maximum reservoir pressure for spouting hydrogen of 13.2 MPa. Experimental results are shown that lift-off heights in stable under-expanded jet flames do not vary significantly and are independent of the reservoir pressure in the range of studied pressure. However, the lifted heights are affected by the nozzle diameters and become smaller as the nozzle diameters increase. From experimental results, the condition for the blow-off process of under-expanded subsonic jet flames was proposed. It was concluded that the under-expanded jet flame could be blown off when the maximum waistline position, where radial distance from the jet axis to an elliptic stoichiometric contour reaches its maximum comes closer to the nozzle exit than the edge of the jet flame base.  相似文献   

19.
对长、宽、高为650 mm×400 mm×12 mm的半闭口狭窄矩形通道(海伦-肖装置)内的甲烷/空气层流预混火焰传播过程进行了实验研究,探究当量比φ在0.6~1.2范围内、火焰传播角度ω在垂直向下-90°至垂直向上90°区间对火焰前锋轮廓发展及非标准层流火焰速度的影响。结果表明:火焰在通道内的传播分为热膨胀、准稳态传播和端壁效应3个阶段,每个阶段具有各自不同的前锋轮廓特征。由于瑞利-泰勒不稳定性机制的作用,所有当量比工况下向上传播的火焰均在准稳态传播阶段中呈现出明显的锋面褶皱与胞状结构;对向下传播的火焰而言,其在贫燃工况(φ为0.6,0.8)下的胞状不稳定性得到了有效抑制,而在当量比φ=1.0及富燃工况(φ=1.2)下,该稳定性效应并不显著。火焰瞬时速度与标准层流速度的比值Ui/UL,在φ=0.6的极贫燃工况与其他当量比工况下展现出明显不同的发展特性,极贫燃工况火焰向上传播时(ω=90°),Ui/UL随着传播过程的进行一直增大,直到火焰触碰壁面末端熄灭,整个过程Ui/UL与火焰传播方向呈正相关关系;而对于其他当量比工况,Ui/UL在传播过程中均先升高后下降,火焰触碰壁面末端熄灭前其值趋于稳定,其平均速度与标准层流速度的比值Ua/UL在水平传播(ω=0°)时达到最大值。  相似文献   

20.
The flame stability limits of confined jet diffusion flames (JDFs) flowing into a co-axial oxidizing stream was studied both experimentally and analytically. Methane and hydrogen and their mixtures were used as the fuel. The experiments were conducted with two different jet diameters and within a wide range of co-flowing stream velocities and hydrogen concentrations in methane or air stream. The hydrogen diffusion flame was found to have a much larger region of stable operation than the methane JDF. Higher stability of the methane JDFs was achieved by the addition of hydrogen to either the jet fuel or the surrounding air stream. A hysteresis phenomena were observed in the reattachment process of lifted flames.It was found that the conditions prior to ignition of the flame, such as the value of co-flowing stream and jet velocities and position of the ignitor, have significant effect on the type of flame stabilization mechanism and flame blowout limits. The optimum ignition conditions for achieving higher blowout limits were investigated. The blowout limits of lifted JDFs were significantly affected by the velocity of co-flowing stream.The present study also reports the results of the calculation of the blowout limits of lifted JDFs using as a criterion the ratio of mixing time scale to characteristic combustion time scale. The agreement of the experimental and calculated data was satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号