首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-Lagrangian code for the solution of the electrostatic drift-kinetic equations in straight cylinder configuration is presented. The code, CYGNE, is part of a project with the long term aim of studying microturbulence in fusion devices. The code has been constructed in such a way as to preserve a good control of the constants of motion, possessed by the drift-kinetic equations, until the nonlinear saturation of the ion-temperature-gradient modes occurs. Studies of convergence with phase space resolution and time-step are presented and discussed. The code is benchmarked against electrostatic Particle-in-Cell codes.  相似文献   

2.
A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak x-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors.Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (γBOUT++=0.245ωA, γELITE=0.239ωA, with Alfvénic timescale 1/ωA=R/VA). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.  相似文献   

3.
ORCO is a new code that estimates the spatial structure of the radial diffusion coefficient for runaway electrons in tokamak geometry. In real experiments, the location of these electrons can be detected by measuring the time evolution of their fast electron bremsstrahlung (FEB) emissivities, usually integrated along several lines of view. ORCO uses a Levenberg-Marquardt algorithm to adjust the free parameters of a generalized transport model to best reproduce the time evolution of these temporal traces. A possible future application for this type of calculations is to use them as indirect probes to test theoretical models of turbulent transport driven by stochastic magnetic fields in tokamaks.  相似文献   

4.
Three codes that solve the gyrokinetic equation in toroidal geometry are compared in the linear limit for the growth rates and real frequencies of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM). The three codes are the gyrokinetic toroidal code (GTC) and GT3D, both of which are radially-global particle-in-cell initial-value codes, and FULL, which is a radially-local continuum eigenvalue code. With the same standard input parameters on a reference magnetic surface, the three codes give good agreement for the linear eigenfrequencies, both without (i.e. with adiabatic electron response) and with trapped electrons, as the perpendicular wavenumber and the ion temperature gradient input parameters are varied.  相似文献   

5.
6.
We explore accurate and efficient algorithms for constructing plasma response models, based on the computed data using a full toroidal MHD stability code MARS-F. These response models are used to study feedback stabilization of resistive wall modes for fusion plasmas. Three approaches are discussed and compared. A direct full-model computation offers the most accurate response, unfortunately without producing analytical expressions for the response model. The pole-residue expansion methods yield analytical and asymptotically rigorous response models. A low-order Padé approximation serves as a model reduction technique that simplifies the controller design, while keeping a reasonable accuracy for the response models. From the computational viewpoint, the most efficient approaches are the pole-residue expansion based on eigenfunction projection, and the low-order Padé approximation.  相似文献   

7.
A stability code for tearing modes in 1D and 2D straight equilibria in the tokamak scaling has been developed. It finds the lowest eigenvalues of a Hermitian problem which is obtained analytically by a reduction of the full problem. The main advantage is the powerful handling of equilibria with several resonant surfaces and displaying poloidal and radial mode couplings. The code has been successfully tested by comparing it with explicitly known analytical results for external kinks.  相似文献   

8.
A computational method to predict transition lines for general three-dimensional configurations is presented. The method consists of a coupled program system including a 3D Navier-Stokes solver, a transition module, a boundary layer code and a stability code. The newly developed transition module has been adapted to be used with parallel computation to account for the high computational demand for three-dimensional configurations. Detailed computations have been performed to show the ability of the Navier-Stokes code to provide three-dimensional boundary layer data of high accuracy needed for the stability analysis. A comprehensive investigation on general computational and parallel performance identifies the numerical effort for the transition prediction method. The procedure has been validated comparing the numerical results with experiments for the flow around an inclined prolate spheroid. Feasibility studies on generic transport aircraft have been performed to show the code’s capability to predict transition lines on general complex geometries.  相似文献   

9.
A new nonlinear gyro-kinetic flux tube code (GKW) for the simulation of micro instabilities and turbulence in magnetic confinement plasmas is presented in this paper. The code incorporates all physics effects that can be expected from a state of the art gyro-kinetic simulation code in the local limit: kinetic electrons, electromagnetic effects, collisions, full general geometry with a coupling to a MHD equilibrium code, and E×B shearing. In addition the physics of plasma rotation has been implemented through a formulation of the gyro-kinetic equation in the co-moving system. The gyro-kinetic model is five-dimensional and requires a massive parallel approach. GKW has been parallelised using MPI and scales well up to 8192+ cores. The paper presents the set of equations solved, the numerical methods, the code structure, and the essential benchmarks.

Program summary

Program title: GKWCatalogue identifier: AEES_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEES_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: GNU GPL v3No. of lines in distributed program, including test data, etc.: 29 998No. of bytes in distributed program, including test data, etc.: 206 943Distribution format: tar.gzProgramming language: Fortran 95Computer: Not computer specificOperating system: Any for which a Fortran 95 compiler is availableHas the code been vectorised or parallelised?: Yes. The program can efficiently utilise 8192+ processors, depending on problem and available computer. 128 processors is reasonable for a typical nonlinear kinetic run on the latest x86-64 machines.RAM:∼128 MB–1 GB for a linear run; 25 GB for typical nonlinear kinetic run (30 million grid points)Classification: 19.8, 19.9, 19.11External routines: None required, although the functionality of the program is somewhat limited without a MPI implementation (preferably MPI-2) and the FFTW3 library.Nature of problem: Five-dimensional gyro-kinetic Vlasov equation in general flux tube tokamak geometry with kinetic electrons, electro-magnetic effects and collisionsSolution method: Pseudo-spectral and finite difference with explicit time integrationAdditional comments: The MHD equilibrium code CHEASE [1] is used for the general geometry calculations. This code has been developed in CRPP Lausanne and is not distributed together with GKW, but can be downloaded separately. The geometry module of GKW is based on the version 7.1 of CHEASE, which includes the output for Hamada coordinates.Running time: (On recent x86-64 hardware) ∼10 minutes for a short linear problem; 48 hours for typical nonlinear kinetic run.References:
  •  
    [1] H. Lütjens, A. Bondeson, O. Sauter, Comput. Phys. Comm. 97 (1996) 219, http://cpc.cs.qub.ac.uk/summaries/ADDH_v1_0.html.
  相似文献   

10.
Working in the low cost 3D scanner design domain, it would be very interesting to employ the inertial technologies because they could provide objects’ surface spatial data, recording their movements, and asking a very low cost in term of sensor investment. Unfortunately these technologies are characterized by distortion problems that normally do not allow to obtain satisfying measures for being employed for 3D scanning applications.This situation happens when working with Magnetic Angular Rate Gravity (MARG) sensor, on which many reports have been written to describe the methods used to suitably manage the data provided by the sensors in order to obtain an accurate orientation estimation; but only a few address the problem of calibration and distortion compensation. Furthermore, the proposed approaches usually involve both complex sensors models and accurate calibration facilities expensive from the workload, the computational and the economic points of view which compromise their possible employment in low-cost 3D scanning applications.In this paper, a novel approach for MARG sensors heading alignment and distortion compensation is proposed in order to increase the reliability of the information provided by the sensors and improve the process of attitude estimation, in order to get measurement quality level sufficient to be employable in 3D scanning applications.Both the effectivity and the reliability of the proposed approach are validated by some experimental results and the performances are evaluated considering the quality of the outcome provided by the same attitude estimation algorithm processing raw data and compensated data.  相似文献   

11.
This paper proposes a new method for labelling the logical structures of document images. The system starts with digitised images of paper documents, performs a physical layout analysis, runs an OCR and finally exploits the OCR’s outputs to find the meaning of each block of text (i.e. assigns labels like “Title”, “Author”, etc.). The method is an extension of our previous work where a classifier, the perceptive neural network, has been developed to be an analogy of the human perception. We introduce in this connectionist model a temporal dimension by the use of a time-delay neural network with local representation. During the recognition stage, the system performs several recognition cycles and corrections, while keeping track and reusing the previous outputs. This dynamic classifier allows then a better handling of noise and segmentation errors. The experiments have been carried out on two datasets: the public MARG containing more than 1,500 front pages of scientific papers with four zones of interest and another one composed of documents from the Siggraph 2003 conference, where 21 logical structures have been identified. The error rate on MARG is less than 2.5% and 7.3% on the Siggraph dataset.  相似文献   

12.
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.  相似文献   

13.
M. Held 《Algorithmica》2001,30(4):563-596
We discuss a triangulation algorithm that is based on repeatedly clipping ears of a polygon. The main focus of our work was on designing and engineering an algorithm that is (1) completely reliable, (2) easy to implement, and (3) fast in practice. The algorithm was implemented in ANSI C, based on floating-point arithmetic. Due to a series of heuristics that get applied as a back-up for the standard ear-clipping process if the code detects deficiencies in the input polygon, our triangulation code can handle any type of polygonal input data, be it simple or not. Based on our implementation we report on different strategies (geometric hashing, bounding-volume trees) for speeding up the ear-clipping process in practice. The code has been tuned accordingly, and cpu-time statistics document that it tends to be faster than other popular triangulation codes. All engineering details that ensure the reliability and efficiency of the triangulation code are described in full detail. We also report experimental data on how different strategies for avoiding sliver triangles affect the cpu-time consumption of the algorithm. Our code, named FIST as an acronym for fast industrial-strength triangulation, forms the core of a package for triangulating the faces of three-dimensional polyhedra, and it has been successfully incorporated into several industrial graphics packages, including an implementation for Java 3D by Sun Microsystems. Received March 29, 1998; revised November 9, 1998, and April 21, 1999.  相似文献   

14.
A massively parallel simulation code, called dHybrid, has been developed to perform global scale studies of space plasma interactions. This code is based on an explicit hybrid model; the numerical stability and parallel scalability of the code are studied. A stabilization method for the explicit algorithm, for regions of near zero density, is proposed. Three-dimensional hybrid simulations of the interaction of the solar wind with unmagnetized artificial objects are presented, with a focus on the expansion of a plasma cloud into the solar wind, which creates a diamagnetic cavity and drives the Interplanetary Magnetic Field out of the expansion region. The dynamics of this system can provide insights into other similar scenarios, such as the interaction of the solar wind with unmagnetized planets.  相似文献   

15.
We present a parallel code for the analysis of sequences of light curves of magnetically active close binaries with brightness inhomogeneities on the surfaces of their component stars. The procedure allows us to search for the best values of the photometric parameters of the binary system as well as to obtain maps of the brightness inhomogeneities regularized by means of the Maximum Entropy and Tikhonov methods. The large amount of computational work is managed by means of a parallel application based on MPI. The code has been made available through the web-based portal Astrocomp (http://www.astrocomp.it) that allows a registered remote user to run it on a set of high-performance computing resources in a completely transparent manner.  相似文献   

16.
The orbit of the Shenzhou IV unmanned spacecraft has been observed four times by jointly using single-frequency GPS receiver, SLR and USB since its successful launch on Dec. 30, 2002. The radial accuracy of orbit determination was better than 2 m[1]. We t…  相似文献   

17.
For magnetically confined plasmas in tokamaks, we have numerically investigated how Lagrangian chaos at the plasma edge affects the plasma confinement. Initially, we have considered the chaotic motion of particles in an equilibrium electric field with a monotonic radial profile perturbed by drift waves. We have showed that an effective transport barrier may be created at the plasma edge by modifying the electric field radial profile. In the second place, we have obtained escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall with resonant modes due to the action of an ergodic magnetic limiter. For monotonic plasma current density profiles we have obtained distributions of field line connections to the wall and line escape channels with the same spatial pattern as the magnetic footprints on the tokamak walls.  相似文献   

18.
针对目前使用惯性(MARG)传感器还原输电线舞动形状存在很多原理性的问题,如位置积分起始点未知、容易丢失输电线低频运动信息等,提出了一种基于惯性传感器姿态的输电线舞动形状还原算法,采用融合同一根输电线上多个MARG的姿态求取每个MARG真实位移以及输电线整体形状.算法能够避免加速度积分时的累积误差,解决了输电线长度约束问题且使用较少MARG即可还原舞动图像.仿真结果表明:算法可以有效地降低导线舞动振幅的误差,且还原误差不随时间增长.  相似文献   

19.
Free boundary three-dimensional anisotropic pressure magnetohydrodynamic equilibria with nested magnetic flux surfaces are computed through the minimisation of the plasma energy functional . The plasma-vacuum interface is varied to guarantee the continuity of the total pressure [p+B2/(2μ0)] across it and the vacuum magnetic field must satisfy the Neumann boundary condition that its component normal to this interface surface vanishes. The vacuum magnetic field corresponds to that driven by the plasma current and external coils plus the gradient of a potential function whose solution is obtained using a Green's function method. The energetic particle contributions to the pressure are evaluated analytically from the moments of the variant of a bi-Maxwellian distribution function that satisfies the constraint BFh=0. Applications to demonstrate the versatility and reliability of the numerical method employed have concentrated on high-β off-axis energetic particle deposition with large parallel and perpendicular pressure anisotropies in a 2-field period quasiaxisymmetric stellarator reactor system. For large perpendicular pressure anisotropy, the hot particle component of the p distribution localises in the regions where the energetic particles are deposited. For large parallel pressure anisotropy, the pressures are more uniform around the flux surfaces.  相似文献   

20.
An approach to solve numerically transport equations for plasmas with spontaneously arising and arbitrarily located transport barriers, regions with a strongly reduced transfer of energy, is proposed. The transport equations are written in a form conserving heat flux and solved numerically by using piecewisely exact analytical solutions of linear differential equations. Compared to standard methods, this approach allows to reduce significantly the number of operations required to obtain a converged solution with a heat conductivity changing abruptly at a critical temperature gradient and to use large time steps in modeling the formation and dynamics of transport barriers. Computations for the tokamak JET are done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号