首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new droplet-array generation technique achieved high quality and high reliability in microgravity experiments on multiple-droplet combustion. Each fuel droplet formed at the intersection of fine, X-shaped SiC fibers when liquid fuel was supplied through a fine glass tube. We aligned several sets of these X-shaped fibers and their corresponding fine glass tubes to form a droplet array. All the droplets in the array were simultaneously generated in a short time. In flame-spread experiments, a hot-wire igniter ignited an end droplet to initiate the flame spread along the array. We demonstrated microgravity experiments of droplet array combustion using the new droplet-array generation technique at a drop-experiment facility, MGLAB, in Japan. We successfully generated large droplets, which often fell off the fiber intersection in normal gravity, by using this method in microgravity. This technique is also effective in droplet-array combustion experiments using high-volatility fuel, where prevaporization is substantial. We compared the flame-spread rate and the flame-spread limit of these linear droplet arrays with results of an existing experiment, and discussed the effects of the suspending fiber on the flame spread.  相似文献   

2.
We investigated the flame-spread characteristics of randomly arranged fuel-droplet arrays in microgravity. Flame-spread probability was calculated based on a percolation model with the flame-spread-limit distance of evenly-spaced n-decane droplet arrays in microgravity. Flame-spread probability depends on the occupation fraction of droplets in a lattice and rapidly increases with the occupation fraction. The local flame-spread-limit distance of unevenly-spaced n-decane droplet arrays was experimentally investigated in microgravity. The droplets were arranged in a straight line at uneven intervals. The local flame-spread-limit distance of the unevenly-spaced droplet arrays depended on the droplet arrangement and increased from the flame-spread-limit distance of the evenly-spaced droplet arrays due to interactive effects. The flame-spread probability considering the increase in local flame-spread-limit distance is larger than that without it.  相似文献   

3.
The effects of gravity on opposed-flow flame spread in a confined geometry were investigated experimentally in the 2.2-s drop tower at the NASA Glenn Research Center. Pure oxygen flowed through samples of 0.64-cm-inner-diameter polyvinyl chloride (PVC) tubing held either horizontally or vertically in a combustion chamber filled with nitrogen. The sample was ignited in normal gravity with a hot wire, and once a flame was established, the apparatus was dropped to observe microgravity effects. Flame spread rate was measured in normal and microgravity at pressures of 1.0 and 0.5 atm. A low-flow ignition limit was observed at an opposed-flow velocity of 1.36 cm/s, at which point the horizontal, vertical, and microgravity flame spread rates were 0.40, 0.30, and 0.16 cm/s, respectively. For flow velocities above approximately 5.2 cm/s, there was no difference in the flame spread rates for normal and microgravity and the flame spread rate increased with a nearly square root dependence with respect to opposed-flow velocity. Buoyant flow velocities of 2.5 and 1.5 cm/s were estimated for horizontal and vertical flames, respectively. Vertical tests conducted at 0.5 atm pressure demonstrated no difference in flame spread rate between normal and microgravity. These results suggest that the fire risk associated with the use of PVC tubes during general anesthesia in either space or ground applications may be reduced if the application of a high-energy surgical tool is prevented during an active phase of the breathing cycle (inhale or exhale).  相似文献   

4.
This work investigates experimentally and theoretically the downward spread of a flame over a thick polymethylmethacrylate (PMMA) slab with an opposed flow of air. Simulation results, using an unsteady combustion model with mixed convection, indicate that the ignition delay time increases with a decreasing opposed-flow temperature or increasing velocity. The ignition delay time is nearly constant at a low opposed flow velocity, i.e., . Experiments were conducted at three different opposed flow temperatures and velocities, namely, , and 353 K and , respectively. Measurements included the flame-spread rate and temperature distributions, using thermocouples and laser-holographic interferometry. The qualitative trends of the flame-spread rate and thermal boundary layer thickness, as obtained experimentally and from numerical predictions, were identical. For a quantitative comparison, the predicted and experimental flame-spread rates correlated well with each other, except at the lowest velocity . The discrepancies between the measured and predicted thermal boundary layer thicknesses decreased with an increasing flow velocity. The quantitative agreement with a high velocity indicates that the spread of an opposed flame is mainly controlled by the flame front, whereas the discrepancies at low flow rates demonstrate the importance of radiation, the finite length of the fuel, and also three-dimensional effects, which were not considered in the model. The temperature profiles around the flame front measured by interferometric photographs indicate a recirculation flow there, as predicted by the simulation.  相似文献   

5.
A simplified analysis and data acquired in the 4.5 s drop tower in MGLAB, Japan in a quiescent oxygen/nitrogen environment are presented for the prediction of the flammability limit in a quiescent microgravity environment. In the experimental matrix the oxygen level and thickness of PMMA are treated as control parameters. Published data from quiescent microgravity experiments on thin ashless filter paper and thick PMMA are also compared with the prediction of the analysis. Based on scale analysis, it is hypothesized that all fuels—from PMMA to cellulose—behave as thermally thin fuels during steady spread of flames in a quiescent environment. An expression for the spread rate that includes radiative effects is proposed for the first time: η0 ∼ 1/2 + 1/2 , where η0 is the spread rate non-dimensionalized by its thermal limit and 0 is the non-dimensional radiation number. For 0 > 1/4, which in dimensional terms translates to a critical thickness criterion τ > (F2/4)(ρgcgscs)(λg/εσ)[(TvT)/(Tv4 − T4)], flame extinction occurs irrespective of all other environmental conditions. Based on this prediction, an extinction thickness can be calculated even at 100% oxygen level. The experimental data from the MGLAB agree reasonably well with this prediction. Flammability maps with fuel half-thickness and oxygen level as coordinates are developed for PMMA and cellulosic fuels, which are shown to be consistent with the current and published data.  相似文献   

6.
Fires caused by accidental spillage of flammable liquids have been a major safety concern in industries and urban areas. There has been a recent surge of interest in the research concerning the combustion and flame spread over an inert porous media soaked with flammable liquid. This interest has been driven by the need to better understand fire and its behaviour under these conditions and improve the relevant fire safety and prevention technologies. A review of key studies in this subject area has been conducted and summarised, focussing mainly on the theory plus a notable experimental findings about combustion and the flame spread phenomena of fuel-soaked porous media. The review covers topics such as flame spread behaviour, physical flame propagation aspects, heat transfer, temperature distribution; and fuel consumption over inert porous media. The review concludes with some practical safety and environmental considerations for decontamination of land soaked with flammable liquid.  相似文献   

7.
Isolated droplet burning were conducted in microgravity ambiences of different temperatures to test the initial diameter influence on droplet burning rate that shows a flame scale effect and represents an overall thermal action of flame in balance with heat loss. The coldest ambience examined was room air, which utilized a heater wire to ignite the droplet. All other ambiences hotter than 633 K were acquired through an electrically heated air chamber in a stainless steel can. An inverse influence of initial droplet diameter on burning rate was demonstrated for the cold and hot ambiences. That is, the burning rate respectively decreased and increased in the former and latter cases with raising the initial droplet diameter. The reversion between the two influences appeared gradual. In the hot ambiences the burning rate increase with increasing the initial droplet diameter was larger at higher temperatures. A “net heat” of flame that denotes the difference between “heat gain” by the droplet and “heat loss” to the flame surrounding was suggested responsible for the results. In low-temperature ambiences there is a negative net heat, and it turns gradually positive as the ambience temperature gets higher and the heat loss becomes less. Relating to luminous flame sizes and soot generation of differently sized droplets clarified that the flame radiation, both non-luminous and luminous, is determinative to the net heat in microgravity conditions. In addition, the work identified two peak values of soot generation during burning, which appeared respectively at the room temperature and at about 1000 K. The increase in ambience temperature made also bigger soot shells. The heat contribution of flame by both radiation and conduction was demonstrated hardly over 40% in the total heat required for droplet vaporization during burning in a hot ambience of 773 K.  相似文献   

8.
The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04–0.35 m s−1 and 468–14,973 kW m−1. Flame radiosity, or radiant emissive power, and gas temperatures were measured with narrow angle radiometers and fine wire thermocouples located at three different heights in the flames, 0.6, 1.1 and 1.6 m above ground. Measured peak radiosity within the visual flame region (reaction zone and free flame) varied between 41 and 176 kW m−2. Measurements within the intermittent flame region above the visually estimated average flame height varied between 10 and 30 kW m−2. The flame vertical radiometric profile was characterized by a uniform area within the reaction zone and lower free flame, and a decrease in radiosity with height as the measurements approach the flame tip.  相似文献   

9.
Experimental investigations on flame spread along a droplet array have been conducted at elevated pressures up to supercritical pressures of the fuel droplet under normal gravity and microgravity. The flame spread rate is measured using high‐speed chemiluminescence images of OH radicals and direct visualization is employed to observe the images of the vaporizing fuel around the unburnt droplet. The mode of flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing and a limit ambient pressure in normal gravity, above which flame spread does not occur. It is seen that flame spread rate is dependent upon the relative position of flame to droplet spacing. In microgravity, the limit droplet spacing of flame spread and the droplet spacing of maximum flame spread rate are larger than those in normal gravity. In microgravity, the flame spread rate with ambient pressure decreases initially, shows a minimum, and then decreases again after taking a maximum. Flame spread time is determined by competing effects between the increased transfer time of the thermal boundary layer due to reduced flame diameter and the decreased ignition delay time in terms of the increase of ambient pressure. In normal gravity, the flame spread rate with ambient pressure decreases monotonically and there exists a limit ambient pressure, except at small droplet spacing, under which flame spread extends to the range of supercritical pressures of fuel. This is because natural convection induces the upward flow of hot gases into a plume above the burning droplets and limits the lateral transfer of thermal boundary layer. Consequently, it is found that flame spread behaviour under microgravity is considerably different from that under normal gravity due to the absence of natural convection. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Instantaneous flame front structure of syngas turbulent premixed flames including the local radius of curvature, the characteristic radius of curvature, the fractal inner cutoff scale and the local flame angle were derived from the experimental OH-PLIF images. The CO/H2/CO2/air flames as a model of syngas/air combustion were investigated at pressure of 0.5 MPa and compared to that of CH4/air flames. The convex and concave structures of the flame front were detected and statistical analysis including the PDF and ADF of the local radius of curvature and local flame angle were conducted. Results show that the flame front of turbulent premixed flames at high pressure is a wrinkled flame front with small scale convex and concave structures superimposed with large scale flame branches. The convex structures are much more frequent than the concave ones on flame front which reflects a general characteristic of the turbulent premixed flames at high pressure. The syngas flames possess much wrinkled flame front with much smaller fine cusps structure compared to that of CH4/air flames and the main difference is on the convex structure. The effect of turbulence on the general wrinkled scale of flame front is much weaker than that of the smallest wrinkled scale. The general wrinkled scale is mainly dominated by the turbulence vortex scale, while, the smallest wrinkled scale is strongly affected by the flame intrinsic instability. The effect of flame intrinsic instability on flame front of turbulent premixed flame is mainly on the formation of a large number of convex structure propagating to the unburned reactants and enlarge the effective contact surface between flame front and unburned reactants.  相似文献   

11.
The CO/H2/CO2/O2, CO/H2/CO2/air turbulent premixed flames as the model of syngas oxyfuel and syngas/air combustion were studied experimentally and compared to that of CH4/air mixtures at high pressures up to 1.0 MPa. Hydrogen ratio in syngas was set to be 35%, 50% and 65% in volumetric fraction. Four perforated plates are used to generate wide range of turbulence intensity and scales. The instantaneous flame structure was measured with OH-PLIF technique and then statistic flame structure parameters and turbulent burning velocity were derived to interpret the multi scale turbulence-flame interaction. Results show that the flame structure of syngas is wrinkled and convex cusps to the unburned mixtures are sharper and deeper comparing to that of CH4 flames. Pressure has a dominating effect on flame wrinkling other than mixtures composition at high pressure of 1.0 MPa. The flame surface density, Σ of syngas is larger than that of CH4. The Σ of syngas flames is almost independent on pressure and hydrogen ratio especially when hydrogen ratio is over 50% which is a significant feature of syngas combustion. Larger flame surface density for syngas flames mainly comes from the finer structure with smaller wrinkles which is the result of more intensive flame intrinsic instability. The ST/SL of syngas is larger than CH4 and it slightly increases with the pressure rise. The ST/SL of syngas oxyfuel is similar to that of syngas/air flames in the present study. The ST/SL increases with the increase of hydrogen ratio and keeps almost constant when hydrogen ratio is over 50%.  相似文献   

12.
This study investigates effects of initial temperatures and pressures on dilution limits of CO/H2/air mixtures by numerical simulation of one-dimensional laminar premixed flames of CO/H2/air mixtures (50%CO–50%H2). Maximum flame temperatures, laminar flame speeds, mass burning rates and flame thickness near the dilution limits are analyzed. Results reveal that the dilution limits are extended at the elevated initial temperatures. The laminar flame speeds and mass burning rates at the dilution limits increase with the elevation of initial temperature, however, the flame thickness at the dilution limits decreases with increasing pressures and increases slightly with elevated initial temperature. The decreased flame thickness renders the flamelet modeling more favorable for turbulent combustion at elevated pressure conditions. The ratio of the flame thickness to the reaction thickness and the Zeldovich number increase first and then decrease with increasing pressure, but the non-monotonic trend of ratio of flame thickness to reaction thickness with the increasing pressures is unnoticeable. Sensitivity analysis suggested that the non-monotonic trend of the Zeldovich number could be caused by the combined effects of following elementary reactions: H + O2 + M → HO2 + M, 2HO2 → H2O2 + O2 and H2O2 + M → 2OH + M.  相似文献   

13.
The effect of ambient pressure on the evaporation of a droplet and a spray of n-heptane was investigated using a model for evaporation at high pressure. This model considered phase equilibrium using the fugacities of the liquid and gas phases for the behavior of a gas being real, and its importance in the calculation of the evaporation of a droplet or spray at high pressures was demonstrated. For the evaporation of a single droplet, the fact that the droplet's lifetime increased with pressure at a low ambient temperature, but decreased at high temperatures, was explained with pressure and the droplet's temperature determining phase equilibrium. In this study, it was also found that the evaporation of a spray can be explained in terms of multiplex dependencies of the atomization and evaporation of a single droplet. The evaporation of a spray was enhanced by increasing the ambient pressure and this effect was more dominant at higher ambient temperatures.  相似文献   

14.
A series of more than 100 experiments with hydrogen-air mixtures have been performed at cryogenic temperatures from 90 to 130 K and ambient pressure. A wide range of hydrogen concentrations from 8 to 60%H2 in a shock tube of 5-m long and 54 mm id was tested. Flame propagation regimes were investigated for all hydrogen compositions at three different blockage ratios 0, 30% and 60% as a function of initial temperature. Piezoelectric pressure sensors and InGaAs photo-diodes have been applied to monitor the flame and shock propagation velocity of the combustion process. More than 150 experiments at ambient pressure and temperature were conducted as the reference data for cryogenic experiments. The critical expansion ratio σ1 for an effective flame acceleration to the speed of sound was experimentally found at cryogenic temperatures. The detonability criteria for smooth and obstructed channels were used to evaluate the detonation cell sizes at cryogenic temperatures as well. The main peculiarities of cryogenic combustion with respect to the safety assessment were that the maximum combustion pressure was several times higher and the run-up-distance to detonation was two times shorter compared to ambient temperature independent of lower chemical reactivity at cryogenic conditions.  相似文献   

15.
Ultra-thin proton-conducting phosphate glass was fabricated by press-forming at high temperature. The glass was evaluated for its ohmic loss reduction when installed as an electrolyte in intermediate-temperature fuel cells. The 36HO1/24NbO5/22BaO4LaO3/24GeO21BO3/249PO5/2 glass (36H-glass) was prepared by alkali-proton substitution. Herein, 3–4 mg of 36H-glass was placed onto a 50 μm-thick stainless steel or Pd support and then sandwiched by a glassy carbon plate, whereupon a 600 kg load was applied at temperatures varying as 333–391 °C. Ultra-thin 36H-glass with a thickness of 16 μm was successfully obtained without degradation of proton conductivity. A fuel cell incorporating the Pd-supported ultra-thin 36H-glass was successfully operated at 300 °C, and the ohmic loss of the fuel cell was reduced down to 2.7 Ω cm2 from the previous reported value of several tens of Ω·cm2.  相似文献   

16.
Large scale thermosyphon solar water heater for high temperature applications is simulated by the use of the Transient Simulation Program (TRNSYS). A daily hot water load of 1500 l/day and 2500 l/day at 80°C was assumed. The hot water is consumed daily from 08·00–17·00 h. A back-up electric auxiliary heater was added to the system in two schemes: first, located inside the storage tank with a thermostat; second, outside the tank connected to the heating system between the tank and the facilities. The collector modules were connected in five different schemes: first, all collectors were connected in series in one line, or collectors were connected in two, three, four or five parallel lines each consisting of many collectors. The results showed that the best connection is when the 20 collectors, comprising the system, are connected in two parallel lines each consisting of 10 collectors. It was found that the monthly and yearly useful energy from the system was higher when the auxiliary water heater was added to the system outside the storage tank.  相似文献   

17.
高温相变蓄热的研究进展   总被引:5,自引:0,他引:5  
从如下两个方面总结了高温相变蓄热的研究现状:①在高温相变材料(PCM)方面,重点介绍了高温相变材料的一些重要性能及其测量,高温相变材料的封装,高温复合相变材料及高温相变材料的应用;②在传热分析方面,主要介绍了相变过程的数值模拟和相变蓄热系统(LTES)的热力学优化。  相似文献   

18.
Hydrogen trapping behavior has been investigated by means of thermal desorption spectrometry (TDS) for a high strength steel after it is austenitized at the temperature range of 880–1250 °C, oil quenched, and tempered at 200 °C. Results show that with increasing austenitizing temperature, the pre-charged hydrogen concentration in the steel first decreases and then increases, being the lowest value at the austenitizing temperature of 1050 °C. The variation of hydrogen concentration with austenitizing temperature is related to the differences in the prior austenite grain size and solute Nb content, which may act as shallow hydrogen traps in the steel. The difference in the pre-charged hydrogen concentration can account for the previously reported result on delayed fracture resistance of the steel after austenitized at different temperatures.  相似文献   

19.
Ultrathin FeNiOxHy nanoflake arrays with the thickness of only ~4.5 nm were prepared on Ni foam (NF) via a facile hydrothermal reaction. The oxygen evolution reaction (OER) properties of the obtained sample (FeNiOxHy/NF) were investigated under alkaline conditions (1.0 M KOH). The optimized FeNiOxHy/NF displays extremely small overpotentials of only 195 and 306 mV to achieve the current densities of 10 and 1000 mA cm−2, respectively, and shows almost no potential attenuation during the 160 hours of stability test even the current density is up to 1000 mA cm−2, demonstrating brilliant OER catalytic activity and durability. FeOOH and the NiOOH produced from the in situ oxidation of the surface Ni atoms of the NF substrate are the active sites. The synergistic effect between FeOOH and NiOOH is responsible for the high performances. To our knowledge, the high activity and stability of FeNiOxHy/NF catalyst outperform almost all of the OER catalysts reported to date. These informative findings are valuable not only for understanding the mechanism of OER but also for the design of cheap transition metal catalysts for industrial water electrolysis at high current densities.  相似文献   

20.
《能源学会志》2020,93(1):377-386
Because of the updated requirement on ultra-low NOx emission (<50 mg/Nm3), most of Chinese coal-fired boilers have to be operated at a low NOx combustion mode. However, for high-sulfur coal, water-cooled wall tubes probably suffer severe corrosion in such a strong reduction atmosphere. This work aims to investigate the high temperature corrosion behavior of water-cooled wall tubes inside a 300 MW boiler unit. A short length of corroded water-cooled wall tube was cut down and was analyzed by various characterization methods to further figure out the detailed corrosion mechanism. The typical corrosion products can be distinguished by blue, black and pale-green. Results showed that blue and black color products were mainly consisted of iron sulfides and iron oxides while the pale-green ones were identified as zinc sulfide. Along the radial direction, a layered structure of corrosion products can be observed. The formation of inner layer resulted from the reaction between iron oxide and hydrogen sulfide. The sulfur element displays a gradual increase trend while the Fe element gives out an opposite trend along the radially outward direction. The intermediate layer comes from the fly ash deposition and the outer layer is formed via condensation and deposition of ferrous sulfide gas on the water-cooled wall. The corrosion in this power plant is typical sulfide type for large amounts of Fe and S element were found in the corrosion products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号