首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combustion of two-dimensional laminate propellants of ammonium perchlorate (AP) and hydroxyl-terminated polybutadiene is investigated experimentally and theoretically. The experiments use UV emission and transmission imaging to obtain simultaneous information about flame structure and burning-surface profile for pressures ranging from 2 to 55 atm. Previous experimental work for laminates with pure binder has been extended to cases including laminates with oxygenated binder. The modeling uses numerical computations based on finite-rate chemistry with simplified kinetics and a free surface. Results show that flame-surface structure is a function of length scale (in this case, fuel-layer thickness), pressure, and equivalence-ratio disparity between the nonpremixed fuel and the oxidizer regions (binder-matrix equivalence ratio). Factors that promote split (diffusion) flame-surface structure are large length scale, high pressure, and large equivalence-ratio disparity. The opposite factors (including oxygenating the binder) promote merged (premixed) flame-surface structure. For oxygenated binder loaded to the monomodal-AP limit (fine-AP/binder 76/24) the transition thickness between split and merged structure is 5 to 10 times larger than that for pure binder. A correlation is shown between this transition and the optimal thickness that maximizes regression rate (at a given pressure). It has been determined both computationally and experimentally through the use of triple-layer laminates that the flame-surface structure at the center of the laminate is relatively uninfluenced by the outer boundary conditions. This provides firm justification for using the simpler, single-fuel-layer laminates to validate computational simulations through characterizing the effects of pressure, thickness, and binder equivalence ratio on flame and burning-surface structure.  相似文献   

2.
将DSC技术应用于5种林业废弃物及低温热解焦炭的比热测定,通过分析标准样——刚玉(Al2O3)与生物质样品在升温过程中的吸热特性,可得到样品的比热,同时利用前人经验公式进行了对比分析.生物质样品的比热为1.55~1.62 J/(g·℃),焦炭的比热为0.83~0.99 J/(g·℃),与文献报道一致,这也证明了DSC测...  相似文献   

3.
An experimental study on the phase change behavior of organic phase change materials (PCMs) in porous building materials is reported. Three kinds of porous materials and two kinds of PCMs were used. The phase change behavior of organic PCMs and phase change composites was measured by means of differential scanning calorimetry (DSC). The pore structure of the porous materials was characterized by means of mercury intrusion porosimetry (MIP). X-ray fluorescence spectrometry (XRF) and Fourier transformation infrared spectroscopy (FTIR) were used to characterize the chemical properties of porous materials and phase change materials. Quite different phase change behaviors were found for these two kinds of PCMs in porous materials. For capric acid with a functional group of –COOH, a remarkable elevation of melting temperature was found when confined in porous materials. But for paraffin with only inactive functional groups of –CH2 and –CH3, no elevation or depression of the melting temperature was found when confined in the porous materials. The interaction between functional groups of PCM molecules and alkaline spots on the inner pore surface of the porous materials and the Clapeyron equation were used to explain the different shift of the phase change temperature of capric acid and paraffin in porous materials.  相似文献   

4.
Ternary blends were recently suggested as a sound approach to increase the short circuit current density of organic solar cells by sensitizing the bulk heterojunction (BHJ) with a further absorber, i.e., a low band gap polymer. Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b´]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) is a suitable candidate as low band gap polymer for ternary blends with poly(3-hexylthiophene) (P3HT) and [6,6]-pheny-C61-butyric acid methyl ester ([60]PCBM) due to its ideal energy level and charge carrier properties. Phase diagrams are common in polymer science to visualize the mixing behavior of multicomponent systems as a function of temperature. In this study, we have used differential scanning calorimetry (DSC) to extract phase diagrams for binary and ternary organic semiconductor blends, and built the corresponding solar cells to analyze correlations between the thermal and the electrical properties of such semiconductor blends.  相似文献   

5.
Anion exchange membrane fumasep® FAA-2 was characterized with ex and in situ methods in order to estimate the membranes’ suitability as an electrolyte for an alkaline direct methanol fuel cell (ADMFC). The interactions of this membrane with water, hydroxyl ions and methanol were studied with both calorimetry and NMR and compared with the widely used proton exchange membrane Nafion® 115. The results indicate that FAA-2 has a tighter structure and more homogeneous distribution of ionic groups in contrast to the clustered structure of Nafion, moreover, the diffusion of OH ions through this membrane is clearly slower compared to water molecules. The permeability of methanol through the FAA-2 membrane was found to be an order of magnitude lower than for Nafion. Fuel cell experiments in 1 mol dm−3 methanol with FAA-2 resulted in OCV of 0.58 V and maximum power density of 0.32 mW cm−2. However, even higher current densities were obtained with highly concentrated fuels. This implies that less water is needed for fuel dilution, thereby decreasing the mass of the fuel cell system. In addition, electrochemical impedance spectroscopy for the ADMFC was used to determine ohmic resistance of the cell facilitating the further membrane development.  相似文献   

6.
Torrefaction processes of four kinds of biomass materials, including bamboo, willow, coconut shell and wood (Ficus benjamina L.), were investigated using the thermogravimetric analysis (TGA). Particular emphasis is placed on the impact of torrefaction on hemicellulose, cellulose and lignin contained in the biomass. Two different torrefaction processes, consisting of a light torrefaction process at 240 °C and a severe torrefaction process at 275 °C, were considered. From the torrefaction processes, the biomass could be divided into two groups; one was the relatively active biomass such as bamboo and willow, and the other was the relatively inactive biomass composed of coconut shell and wood. When the light torrefaction was performed, the results indicated that the hemicellulose contained in the biomass was destroyed in a significant way, whereas cellulose and lignin were affected only slightly. Once the severe torrefaction was carried out, it further had a noticeable effect on cellulose, especially in the bamboo and willow. The light torrefaction and severe torrefaction were followed by a chemically frozen zone, regardless of what the biomass was. From the viewpoint of torrefaction application, the investigated biomass torrefied in less than 1 h with light torrefaction is an appropriate operation for producing fuels with higher energy density.  相似文献   

7.
To evaluate the potential of pulverized coals partially replaced by rice husks used in blast furnaces, thermal behavior of blends of rice husks and an anthracite coal before and after passing through a drop tube furnace (DTF) was investigated by using a thermogravimetry (TG). For the blends of the raw materials in the TG, fuel reaction with increasing temperature could be partitioned into three stages. When the rice husks were contained in the fuel, a double-peak distribution in the first stage was observed, as a consequence of thermal decompositions of hemicellulose, cellulose and lignin. A linear relationship between the char yield and the biomass blending ratio (BBR) developed, reflecting that synergistic effects in the pyrolytic processes were absent. This further reveals that the coal and the rice husks can be blended and consumed in blast furnaces in accordance with the requirement of volatile matter contained in the fuel. After the fuels underwent rapid heating (i.e. the DTF), a linear relationship from the thermogravimetric analyses of the unburned chars was not found. Therefore, the synergistic effects were observed and they could be described by second order polynomials. When the BBR was less than 50%, varying the ratio had a slight effect on the thermal behavior of the unburned chars. In addition, the thermal reactions of the feeding fuels and of the formed unburned chars behaved like a fingerprint.  相似文献   

8.
The purpose of this study is to investigate the torrefaction behavior of woody biomass (Lauan) blocks and its influence on the properties of the wood. Three different torrefaction temperatures of 220, 250 and 280 °C, corresponding to light, mild and severe torrefactions, and four torrefaction times of 0.5, 1, 1.5 and 2 h were considered. After analyzing the torrefied woods, it was found that the torrefaction temperature of 280 °C was able to increase the calorific value of the wood up to 40%. However, over 50% of weight was lost from the wood. The grindability of the torrefied wood could be improved in a significant way if the torrefaction temperature was as high as 250 °C and the torrefaction time longer than 1 h. Therefore, the torrefaction temperature of 250 °C along with the torrefaction time longer than 1 h was the recommended operation to intensify the heating value and grindability as well as to avoid too much mass loss of the wood. This study also suggested that over 50% of the reacted wood was converted into condensed liquid. The main components in the liquid were monoaromatics; little amount of heterocyclic hydrocarbons were also obtained from the torrefactions, especially at the torrefaction temperature of 280 °C.  相似文献   

9.
V-rich solid solution alloys are potential candidates for Ni-MHx negative electrodes and hydrogen sorbing materials. Mechanical alloying (MA) is used in this paper to produce Ti0.5V1.5?xNix nanocrystalline alloys (x = 0, 0.1, 0.2, 0.3). A SPEX 8000 M mill is used. The aim of this work is to study the effect of chemical modification by Ni on hydrogen sorption/desorption and electrochemical properties of V-rich body-centered-cubic (BCC) alloys. Presented measurements results show formation of BCC phase after 14 h of MA. The nanocrystallinety of obtained materials is confirmed by high resolution transmission electron microscopy images. MA alloys are tested by a Sievert's device at near room temperature. Partial substitution of V by Ni causes improved hydrogenation kinetics, reduced hysteresis and increased hydrogenation/dehydrogenation reversibility. Observed properties are mainly due to differences in structures of studied materials. Electrochemical studies on chemically modified V-rich alloys show that capacity retaining rate and discharge capacity increase with higher Ni content in the material.  相似文献   

10.
In order to study the changes in latent heat of fusion and melting temperature of calcium chloride hexahydrate (CaCl2·6H2O) inorganic salt as a latent heat storage material, a thousand accelerated thermal cycle tests have been conducted. The effect of thermal cycling and the reliability in terms of the changing of the melting temperature using a differential scanning calorimeter (DSC) is determined. It has been noticed that the CaCl2·6H2O melts between a stable range of temperature and has shown small variations in the latent heat of fusion during the thermal cycling process. Thus, it can be a promising phase change material (PCM) for heating and cooling applications for various building/storage systems.  相似文献   

11.
The improvement on physical and chemical properties of pulverized biomass from torrefaction is investigated to evaluate the potential of biomass as solid fuel used in boilers and blast furnaces. Three biomasses of bamboo, banyan and willow are considered. The results indicate that when the torrefaction temperature is relatively low such as 230 and 260 °C, the weight loss of biomass depends significantly on the temperature, as a result of consumptions of hemicellulose and cellulose. However, once the torrefaction temperature is as high as 290 °C, the weight losses of various biomass materials tend to become uniform. The decreased O/C ratio in biomass from torrefaction can be explained by intensified lignin content in that the O/C ratio in lignin is low compared to that in hemicellulose and cellulose. Furthermore, the enriched element C in torrefied biomass results in an increase in the calorific value of the torrefied materials. However, the enlarged higher heating value (HHV) of biomass from torrefaction cannot keep up with the weight loss; this leads to the decrease in total energy of biomass as the torrefaction temperature rises. The conducted correlation in predicting the HHV of raw biomass can also be utilized for torrefied biomass. The raw pulverized biomasses are characterized by agglomeration in the regime of smaller particle size. Once the biomasses undergo torrefaction, the dispersion of powder is improved, thereby facilitating the injection of biomass powder. This enhances the applications of pulverized biomass in boilers and blast furnaces.  相似文献   

12.
阐述了依据清净剂及其加剂汽油的热稳定性预测其控制发动机沉积物的可行性.用热分解率( TGA)从购自汽车售后市场8款清净剂中挑选2款特定热稳定性的清净剂,分别按规定浓度添加在2台试验车的汽油中进行1000 km道路试验.结果表明,这2款清净剂控制CCD、IVD及PFID的实际效能与其由TGA热稳定性预测的清净效能完全吻合...  相似文献   

13.
Recently, studies of microalgae in China have increased a lot because of their obvious advantages over other biological fuels. In this paper, the combustion behavior of Chlorella vulgaris (a genus of unicellular green microalgae) was investigated in a thermogravimetric analyzer (TGA) from room temperature to 800 °C in O2/N2 atmospheres. The effects of different oxygen concentrations (20, 50, 60, 80 vol.%) and different heating rates (10, 20 and 40 °C min−1) on the combustion processes of C. vulgaris had been studied. The results indicated that the combustion processes of C. vulgaris could be divided into three stages. The oxygen concentrations and heating rates had important effects on the main combustion processes of C. vulgaris. The iso-conversional method involving Flynn–Wall–Ozawa (FWO) and the Kissinger–Akahira–Sunose (KAS) methods were used for the kinetic analysis of the main combustion process. The results indicated that, when the oxygen concentration varied from 20 to 80 vol.%, the value of activation energy increased respectively from 134.03 to 241.04 kJ mol−1 by using FWO method and from 134.53 to 242.33 kJ mol−1 by KAS method. Moreover, the optimal oxygen concentration for C. vulgaris combustion was 25–35 vol.%.  相似文献   

14.
生物质与煤共燃的燃烧特性研究   总被引:2,自引:0,他引:2  
采用热重分析法,对5种生物质与煤以相同比例掺混后在不同升温速率下进行了共燃试验。研究表明,生物质的加入改善了煤的燃烧性能,且随升温速率的升高,着火温度乃呈下降趋势;各试样的挥发分最大释放速率、固定炭最大燃烧速率、燃尽温度均呈增加趋势,它们的燃烧特性均随升温速率的升高而变好。  相似文献   

15.
This study presents an investigation on the influence of hydrothermally treated municipal solid waste (MSW) on the co-combustion characteristics with different rank coals, i.e. Indian, Indonesian and Australian coals. MSW blends of 10%, 20%, 30% and 50% (wt.%) with different rank coals were tested in a thermogravimetric analyser (TGA) in the temperature range from ambient to 700 °C under the heating rate of 10 °C/min. Combustion characteristics such as volatile release, ignition and burnout were studied for the blend fuel. Different ignition behavior was observed depending on the blends composition and the coal rank. The result of this work indicates that the blending of MSW improves devolatization properties of coal. But it was found that the co-combustion characteristics of MSW and coal blend cannot be predicted only from the pyrolytic and or devolatization phenomena as the other factors such as the coal quality also plays a vital role in deciding the blends co-combustion characteristics. The TGA combustion profiles showed that the combustion characteristics of blends followed those of parent fuels in both an additive and non-additive manners. These experimental results help to understand and predict the behavior of coal and MSW blends in practical applications.  相似文献   

16.
17.
Herein, we describe the synthesis of Mg2FeH6 by hydrogenation of a 2.1 Mg:Fe (mol/mol) powder mixture prepared by cold roll milling (CRM) in air. The thickness of Fe layers and the amount and distribution of oxygen with number of CRM passes were systematically analyzed. CRM-induced microstructural changes were shown to play an important role in Mg2FeH6 formation. Although repeated CRM effectively decreased the Fe layer thickness to values sufficient for the fast formation of Mg2FeH6, too much CRM passes decreased the total degree of hydrogenation due to inevitable oxidation of Mg in air. Both microstructure refinement and minimal oxidation are the prerequisites for efficient Mg2FeH6 synthesis, with the former condition being achievable by optimizing the number of milling passes, and the latter one requiring CRM under an inert atmosphere.  相似文献   

18.
Wei-Hsin Chen  Po-Chih Kuo 《Energy》2011,36(11):6451-6460
In recent years, torrefaction, a mild pyrolysis process carried out at the temperature range of 200-300 °C, has been considered as an effective route for improving the properties of biomass. Hemicellulose, cellulose, lignin and xylan are the basic constituents in biomass and their thermal behavior is highly related to biomass degradation in a high-temperature environment. In order to provide a useful insight into biomass torrefaction, this study develops the isothermal kinetics to predict the thermal decompositions of hemicellulose, cellulose, lignin and xylan. A thermogravimetry is used to perform torrefaction and five torrefaction temperatures of 200, 225, 250, 275 and 300 °C with 1 h heating duration are taken into account. From the analyses, the recommended values of the order of reaction of hemicellulose, cellulose, lignin and xylan are 3, 1, 1 and 9, respectively, whereas their activation energies are 187.06, 124.42, 37.58 and 67.83 kJ mol−1, respectively. A comparison between the predictions and the experiments suggests that the developed model can provide a good evaluation on the thermal degradations of the constituents, expect for cellulose at 300 °C and hemicellulose at 275 °C. Eventually, co-torrefaction of hemicellulose, cellulose and lignin based on the model is predicted and compared to the thermogravimetric analysis.  相似文献   

19.
Wei-Hsin Chen  Po-Chih Kuo 《Energy》2011,36(2):803-811
Torrefaction is a thermal pretreatment process for biomass where raw biomass is heated in the temperatures of 200-300 °C under an inert or nitrogen atmosphere. The main constituents contained in biomass include hemicellulose, cellulose and lignin; therefore, the thermal decomposition characteristics of these constituents play a crucial role in determining the performance of torrefaction of lignocellulosic materials. To gain a fundamental insight into biomass torrefaction, five basic constituents, including hemicellulose, cellulose, lignin, xylan and dextran, were individually torrefied in a thermogravimetry. Two pure materials, xylose and glucose, were torrefied as well for comparison. Three torrefaction temperatures of 230, 260 and 290 °C, corresponding to light, mild and severe torrefactions, were taken into account. The experiments suggested the weight losses of the tested samples could be classified into three groups; they consisted of a weakly active reaction, a moderately active reaction and a strongly active reaction, depending on the natures of the tested materials. Co-torrefactions of the blend of hemicellulose, cellulose and lignin at the three torrefaction temperatures were also examined. The weight losses of the blend were very close to those from the linear superposition of the individual samples, suggesting that no synergistic effect from the co-torrefactions was exhibited.  相似文献   

20.
用热重分析法,对花生壳与煤以相同比例掺混后在不同升温速率下进行了共燃试验。研究表明,生物质的加入改善了煤的燃烧性能,且随升温速率的升高,着火温度呈下降趋势;各试样的挥发分最大释放速率、固定炭最大燃烧速率、燃尽温度均呈增加趋势,它们的燃烧特性均随升温速率的升高而变好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号