首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damköhler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads.  相似文献   

2.
Three-dimensional droplet-array combustion with an unsteady liquid-phase and a quasi-steady gas-phase is studied computationally by a generalized approach using a mass-flux potential function. Symmetric and asymmetric droplet arrays with non-uniform droplet size and non-uniform spacing are considered. Burning rates are computed and correlated with the number of droplets, an average droplet size, and an average spacing for the array through one similarity parameter for arrays as large as 1000 droplets. Total array vaporization rates are found to be maximized at a specific droplet number density that depends on liquid volume within the array. An unsteady liquid-phase model with either a uniform or a radially varying temperature distribution is coupled with the quasi-steady gas-phase solution for decane, heptane, and methanol fuels. Droplet interactions and liquid-phase heating have been shown to almost double the lifetime when compared to an isolated droplet. Depending on fuel type, initial temperature, and array geometry, droplets may initially burn with individual flames, transition to a single group flame, and transition back to individual flames as vaporization progresses. In most cases, group combustion occurs upon ignition and is the dominant mode of combustion.  相似文献   

3.
Quasi-steady burning and extinction of droplets are of interest from both fundamental and application viewpoints. The latter is related to combustor performance and fire safety issues in reduced gravity environments. Influences of diluent in the atmosphere on isolated droplet combustion characteristics including extinction provide insights to fire extinguishment phenomena and the effectiveness of various diluents as fire suppressants. Extinction of pure methanol and methanol–water droplets ranging from 1.5 to 7 mm size, for varying levels of ambient carbon-dioxide, helium and oxygen concentration – burning in a quiescent microgravity environment were studied numerically to compare the effectiveness of fire suppressant diluent selection and determining the limiting oxygen index. The results show distinct regimes of diffusive and radiative extinction. The transition from diffusive to radiative extinction is strongly influenced by the ambient diluent selection, especially by carbon dioxide concentration. Results for helium as the diluent showed increased burning rate and extinction due to diffusive heat loss. An “extinction characteristic” correlation is proposed that depends on burning rate, ambient diffusivity and flame standoff ratio. Recent methanol droplet experiments conducted over a wide range of operating conditions onboard the International Space Station were found to yield results that agree well with the proposed “extinction characteristic” correlation.  相似文献   

4.
Autoignition and burning rates of fuel droplets under microgravity   总被引:1,自引:0,他引:1  
This paper presents a mathematical model for the unsteady evaporation, ignition, and combustion of isolated fuel droplets under microgravity. The model consists of a large structured system of differential algebraic equations, where the numerical complexity is due both to the stiff nature of the kinetic mechanism and to the flame structure around the droplet. A very general, detailed kinetic scheme, consisting of ∼200 species and over 5000 reactions, is used to describe the gas-phase combustion of different fuels. Several comparisons with experimental measurements, carried out under various operating conditions, confirm that the proposed model is a useful tool for characterizing low-temperature and high-temperature ignition delay times. The predicted explosion diagrams of n-alkanes, as well as their ignition delay times, agree with the experimental measurements; the various oxidation regions are closely reproduced too. In addition to this, recent experimental results, relating to the influence of the initial diameter on droplet burning rates in cold and hot environments, are also presented and discussed. Lastly, an analysis of the extinction diameters for the combustion of n-heptane droplets allows a discussion of the role of radiative heat transfer, as well as further emphasizing the importance of the low-temperature oxidation mechanisms.  相似文献   

5.
6.
Reduced-gravity experiments on combustion of propanol-glycerol mixture droplets were performed. Droplets were initially about 1 mm in diameter with initial glycerol mass fractions of 0, 0.05 and 0.2. All experiments were in air at standard temperature and pressure. Experiments showed flame contractions, and data on burning rates and onset times for flame contraction allowed effective species diffusivities to be estimated. Comparison of the experiments with computational modeling suggests that convective mixing was likely present in the droplets. Propanol-glycerol droplets sometimes exhibited extinction after flame contraction. This behavior has been previously observed only for much larger droplets burned in space-based experiments.  相似文献   

7.
This paper presents an investigation into the sooting characteristics of isolated droplets (for fuel n-decane) burning in heated ambients in microgravity. A backlit video view of the droplet was taken to determine the soot shell size and to judge the transient soot generation according to qualitative amount of soot. The independent experiment variables were the ambient temperature and initial droplet diameter. Soot generation was higher for initially larger droplets when compared at the same burning time normalized with the initial droplet diameter squared (called normalized burning time). At the same absolute burning time there existed an obvious initial transient period after ignition in which the stated relationship was not satisfied. This transient time increased with increasing the ambient temperature. There was a peak in the soot generation at about 1000 K throughout the lifetime of the droplet. The soot shell size was generally larger for an initially bigger droplet at the same instantaneous droplet diameter or normalized burning time. At the same absolute burning time, however, an initially smaller droplet exhibited larger relative soot shell sizes (the soot shell size normalized with the initial droplet diameter). The soot shell size increased monotonically with increasing ambient temperature. This is due to the increase in the Stefan flow drag with the larger burning rate at the higher temperature. The consequent result is that the soot shell sizes are much larger for droplets burning in heated ambients than for droplets burning in room-temperature ambients.  相似文献   

8.
An experimental study of droplet combustion of nonane (C9H20) at elevated pressures burning in air is reported using low gravity and small droplets to promote spherical gas-phase symmetry at pressures up to 30 atm (absolute). The initial droplet diameters range from 0.57 to 0.63 mm and they were ignited by two electrically heated hot wires positioned horizontally on opposite sides of the droplet. The droplet and flame characteristics were recorded by a 16-mm high-speed movie and a high-resolution video camera, respectively. A photodiode is used to measure broadband gray-body emission from the droplet flames and to track its dependence on pressure. Increasing the pressure significantly influences the ability to make quantitative measurements of droplet, soot cloud, and luminous zone diameters. At pressures as low as 2 atm, soot aggregates surrounding the droplet show significant coagulation and agglomeration and at higher pressures the soot cloud completely obscures the droplet, with the result being that the droplet could not be measured. Above 10 atm radiant emissions from hot soot particles are extensive and the resulting flame luminosity further obscures the droplet. Photographs of the luminous zone in subcritical pressures show qualitatively that increasing pressure produces more soot, and the mean photodiode voltage output increases monotonically with pressure. The maximum flame and soot shell diameters shift to later times as pressure increases and the soot shell is located closer to the flame at higher pressure. The soot shell and flame diameter data are correlated by a functional relationship of reduced pressure derived from scaling the drag and thermophoretic forces on aggregates that consolidates all of the data onto a single curve.  相似文献   

9.
Experimental investigations on flame spread along a droplet array have been conducted at elevated pressures up to supercritical pressures of the fuel droplet under normal gravity and microgravity. The flame spread rate is measured using high‐speed chemiluminescence images of OH radicals and direct visualization is employed to observe the images of the vaporizing fuel around the unburnt droplet. The mode of flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing and a limit ambient pressure in normal gravity, above which flame spread does not occur. It is seen that flame spread rate is dependent upon the relative position of flame to droplet spacing. In microgravity, the limit droplet spacing of flame spread and the droplet spacing of maximum flame spread rate are larger than those in normal gravity. In microgravity, the flame spread rate with ambient pressure decreases initially, shows a minimum, and then decreases again after taking a maximum. Flame spread time is determined by competing effects between the increased transfer time of the thermal boundary layer due to reduced flame diameter and the decreased ignition delay time in terms of the increase of ambient pressure. In normal gravity, the flame spread rate with ambient pressure decreases monotonically and there exists a limit ambient pressure, except at small droplet spacing, under which flame spread extends to the range of supercritical pressures of fuel. This is because natural convection induces the upward flow of hot gases into a plume above the burning droplets and limits the lateral transfer of thermal boundary layer. Consequently, it is found that flame spread behaviour under microgravity is considerably different from that under normal gravity due to the absence of natural convection. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Droplet combustion experiments carried out onboard the International Space Station, using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a “cool flame” burning in the “partial-burning” regime where both fuel and oxygen leak through the low-temperature-controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possible simultaneous presence of “cool” and “hot” flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface, called the “cool flame”, and the other farther away from the droplet surface, termed the “hot flame”. A Burke-Schumann analysis of this dual structure seems to indicate that such flame structures are possible over a limited range of initial conditions. These theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.  相似文献   

11.
Isolated droplet burning were conducted in microgravity ambiences of different temperatures to test the initial diameter influence on droplet burning rate that shows a flame scale effect and represents an overall thermal action of flame in balance with heat loss. The coldest ambience examined was room air, which utilized a heater wire to ignite the droplet. All other ambiences hotter than 633 K were acquired through an electrically heated air chamber in a stainless steel can. An inverse influence of initial droplet diameter on burning rate was demonstrated for the cold and hot ambiences. That is, the burning rate respectively decreased and increased in the former and latter cases with raising the initial droplet diameter. The reversion between the two influences appeared gradual. In the hot ambiences the burning rate increase with increasing the initial droplet diameter was larger at higher temperatures. A “net heat” of flame that denotes the difference between “heat gain” by the droplet and “heat loss” to the flame surrounding was suggested responsible for the results. In low-temperature ambiences there is a negative net heat, and it turns gradually positive as the ambience temperature gets higher and the heat loss becomes less. Relating to luminous flame sizes and soot generation of differently sized droplets clarified that the flame radiation, both non-luminous and luminous, is determinative to the net heat in microgravity conditions. In addition, the work identified two peak values of soot generation during burning, which appeared respectively at the room temperature and at about 1000 K. The increase in ambience temperature made also bigger soot shells. The heat contribution of flame by both radiation and conduction was demonstrated hardly over 40% in the total heat required for droplet vaporization during burning in a hot ambience of 773 K.  相似文献   

12.
We present a computational model to describe the two-phase thermal and chemical interactions between a freely propagating premixed flame and fine droplets of water. The objective is to develop a fundamental understanding of flame structure and extinction in the presence of a water mist. The model and the computational algorithm must accommodate strong coupling between the droplet dynamics and the gaseous flow. The gas-phase conservation equations, which include elementary chemistry, are discretized and solved on an adaptive Eulerian mesh, while the droplet dynamics are represented in a Lagrangian framework. A modified arclength-continuation method is used to follow the solutions through the extinction turning point and thus predict flame-extinction limits. The model predicts how burning velocity and extinction conditions depend on droplet size and number density. The results compare very favorably with previously published theoretical analyses.  相似文献   

13.
The ignition process and burning characteristics of fiber-supported n-heptane fuel droplets in carbon dioxide enriched and varying pressure environments have been studied under normal gravity. Measured values of droplet burning rates, flame dimensions, broad-band radiant emission, and ignition times were compared to droplets burning in standard air conditions. The burning rate constants increased with increasing carbon dioxide concentration or pressure. For 21% ambient oxygen concentration ignition was achieved for carbon dioxide concentrations up to 46% with the remaining being nitrogen. The experimental burning rates were compared to existing theoretical models. A flammability map for n-heptane burning under normal gravity as a function of carbon dioxide concentration and pressure was also developed using these results.  相似文献   

14.
Autoignition of n-heptane droplets under microgravity is investigated numerically. The comprehensive model, considering the transience in both the gas and liquid phases and non-ideal thermophysical properties, includes the 116-step reaction mechanism of Griffiths. Two-stage ignition manifests for ambient temperature less than 900 K at elevated pressures of 0.5 and 1.0 MPa. The predicted first delays and total delays agree well with the experimental data in the literature. The second delay decreases greatly with increasing pressure because a stronger Stefan flow supplies more fuel vapor for reaction as the cool flame shifts closer to the droplet to enhance evaporation. The Stefan flow effect, in combination with the inhomogeneous temperature and fuel vapor distributions, explains why the NTC (negative temperature coefficient) present in homogeneous mixtures is not observed in droplet ignition experiments. Near the minimum ignition diameter, the ignition delay increases for smaller droplets at T = 700 K, P = 1.0 MPa. For a droplet smaller than the minimum ignition diameter, only first ignition with cool flame is reached. The absence of ZTC (zero temperature coefficient) in our simulations may be attributed to the weaker inverse temperature dependence of the reaction mechanism adopted.  相似文献   

15.
The influences of flame stretch, preferential diffusion and internal heat transfer on the extinction of dilute spray flames propagating in a duct with varying cross-sectional area are analyzed using activation energy asymptotics. A completely prevaporized mode and a partially prevaporized mode of flame are identified. The results show that the internal heat transfer, which is associated with the liquid fuel loading and the initial droplet size of the spray, provides internal heat loss for rich sprays but heat gain for lean sprays. The burning intensities of a lean (rich) spray is enhanced (further reduced) with increasing liquid fuel loading and decreasing initial droplet size. The positive stretch weakens a lean methanol-spray flame and rich ethanol-spray flame (Le > 1) but intensifies a rich methanol-spray flame (Le < 1). The flame stretch is found to dominate strongly the tendency towards flame extinction characterized by a C-shaped curve. However, for a rich methanol spray flame (Le < 1), an S-shaped extinction curve can be obtained if it experiences positive stretch and endures a partially prevaporized spray of a large enough fuel loading and a sufficiently large droplet size. The S-shaped curve, which differs greatly from the C-shaped one, shows that the flame extinction is governed by the internal heat loss.  相似文献   

16.
《Combustion and Flame》2006,144(1-2):299-317
This experimental study focused on methanol droplet combustion characteristics during exposure to external acoustical perturbations in both normal gravity and microgravity. Emphasis was placed on examination of excitation conditions in which the droplet was situated (1) at or near a velocity antinode (pressure node), where the droplet experienced the greatest effects of velocity perturbations, or (2) at a velocity node (pressure antinode), where the droplet was exposed to minimal velocity fluctuations. Acoustic excitation had a significantly greater influence on droplet-burning rates and flame structures in microgravity than in normal gravity. In normal gravity, acoustic excitation of droplets situated near a pressure node produced only very moderate increases in burning rate (about 11–15% higher than for nonacoustically excited, burning droplets) and produced no significant change in burning rate near a pressure antinode. In microgravity, for the same range in sound pressure level, droplet burning rates increased by over 75 and 200% for droplets situated at or near pressure antinode and pressure node locations, respectively. Observed flame deformation for droplets situated near pressure nodes or antinodes were generally consistent with the notion of acoustic radiation forces arising in connection with acoustic streaming, yet both velocity and pressure perturbations were seen to affect flame behavior, even when the droplet was situated precisely at or extremely close to node or antinode locations. Displacements of the droplet with respect to node or antinode locations were observed to have a measureable effect on droplet burning rates, yet acoustic accelerations associated with such displacements, as an analogy to gravitational acceleration, did not completely explain the significant increases in burning rate resulting from the excitation.  相似文献   

17.
Tethered methanol droplet combustion in carbon dioxide enriched environment is simulated using a transient one-dimensional spherosymmetric droplet combustion model that includes the effects of tethering. A priori numerical predictions are compared against recent experimental data. The numerical predictions compare favorably with the experimental results and show significant effects of tethering on the experimental observations. The presence of a relatively large quartz fiber tether increases the burning rate significantly and hence decreases the extinction diameter. The simulations further show that the extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the droplet diameter and ambient carbon dioxide concentration both of them lead to a decrease in the burning rate and increase in the extinction diameter. The influence of ambient carbon dioxide concentration on extinction shows a sharp transition in extinction for larger size droplets (do > 1.5 mm) due to a change in the mode of extinction from diffusive to radiative control. In addition predictions from the numerical model is compared against a recently developed simplified theoretical model for predicting extinction diameter for methanol droplets, where the presence and heat transfer contribution of the tether is not taken into account implicitly. The numerical results suggest some limitation in the theoretical modeling assumptions for favorable comparisons with the experimental data.  相似文献   

18.
Experimental findings are provided on the effect of electrostatically charging a fuel on single-burning droplet combustion in normal gravity. It was established that significant modification of the flame morphology and the droplet burning time could be achieved, solely by the droplet charge, without the application of external electric fields. Negative charging of the droplets of mixtures of isooctane with either ethanol or a commercially available anti-static additive generated intense motion of the flame and abbreviated the droplet burning time by as much as 40% for certain blend compositions. Positive charging of the droplets generated almost spherical flames, because electrostatic attraction toward the droplets countered the effect of buoyancy. By comparing combustion of droplets of the same conductivity but different compositions, coupling of electrostatics with combustion chemistry was established.  相似文献   

19.
In order to study the electrical ignition characteristics of hydroxylammonium nitrate (HAN)-based liquid propellant, an experimental device for the electrical heating ignition of a liquid propellant droplet was designed. By using a high speed camera system, the ignition properties of the LP1846 single droplet were observed at different electrical heating speeds. The results show that when the LP1846 droplet is electrified, it mainly goes through an evaporization process, a periodic expansion and contraction process, a stronger thermal decomposition process, and an ignition and combustion process. The periodic expansion and contraction process accompanies the droplet micro-explosion phenomenon, and the micro-explosion mechanism is formed mainly due to the overheated water component in LP1846. When peak load voltage is from 80 to 140V/s, the ignition delay of the LP1846 droplet is linearly shortened from 0.82 to 0.62s, but the flame is lighter. Based on the above experiments, a simplified model of the electrical heating ignition of the LP1846 single droplet is established.  相似文献   

20.
《Combustion and Flame》1985,62(2):121-133
Minimum ignition energies and flame radii as a function of time were measured for near-limit, limit, and sublimit fuel-lean methaneair mixtures burning at one-g and zero-g. Minimum ignition energy values were the same at one-g and zero-g except for mixtures very near the zero-g flammability limit and leaner, where the zero-g values were much higher than the one-g values. For sublimit mixtures at zero-g a previously unreported mode of unstable flame propagation was observed; this mode was characterized by a flame radius increasing in proportion to the square root of the time lapse from ignition, an energy release often orders of magnitude greater than the spark energy input, and sudden extinction. This mode of flame propagation was observed at all gas pressures tested but was more pronounced at higher pressures. All zero-g propagation was spherically symmetric except for a few unusual flame extinguishments at high pressures. The principal conclusions are that flame extinguishment at zero-g is caused by a flame-front instability and that gravitational forces have a stabilizing effect on upward flame propagation. The cause of the instability could not be determined; further experiments which might aid in determining the cause are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号