共查询到19条相似文献,搜索用时 65 毫秒
1.
基于神经网络GIS局部放电模式的识别 总被引:2,自引:0,他引:2
全封闭气体绝缘开关设备(GIS)广泛应用于电网中,其内部缺陷导致的设备故障可能会引起大面积停电事故.针对GIS缺陷放电模式识别问题,设计了3种GIS典型放电模式,通过实验平台获取放电指纹数据,并从中提取出12种特征.对基于单一网络方式的概率神经网络、自适应神经网络以及基于复合神经网络方式下的GIS局部放电识别问题进行对比研究,考察3种网络方式在输入验证、部分训练集等不同条件下的放电模式识别率与一致性问题.实验结果表明,采用上述单一方式神经网络可以作为一种局部放电识别手段,但识别结果的一致性较差,而复合神经网络不仅具有高识别率,而且一致性也较好,可以较好地满足GIS局部放电识别. 相似文献
2.
基于三维谱图混沌特征的GIS局部放电识别 总被引:2,自引:0,他引:2
气体绝缘电器(GIS)局部放电(PD)的故障诊断对于GIS的运行状态评估有着重要意义,传统模式识别方法局限于对描述PD谱图形态分布方面的特征进行分析与识别,缺乏对PD特征更全面、更深刻、更本质的分析研究,导致出现对某些类型放电识别率低等问题。针对这些问题,本文提出了一种基于混沌理论的GIS PD识别方法,连续采集100个工频周期的PD信号构成一个?-v-n三维谱图样本F,以矩阵F的一列作为一个信号序列进行混沌分析,即计算对应同一相位信号序列的最大Lyapunov指数,获取36个最大Lyapunov指数在不同相位区间的分布特征作为不同相位下的局部放电混沌特征。实验结果表明,提取的混沌特征可实现对PD本质的深入挖掘,整体识别效果较好,特别是对于传统的统计特征识别方法难以区分的气隙类缺陷识别率很高,可作为统计特征识别方法的辅助方法加入到识别系统中,进一步提高识别准确率。 相似文献
3.
4.
局部放电(PD)可以反映气体绝缘组合开关电器(GIS)内部的绝缘缺陷,不同类型的放电对GIS的危害程度存在明显的差异,正确识别GIS的放电类型对于保证GIS安全可靠运行、评估GIS的绝缘状况和制定合理的维修策略具有十分重要的意义。为了研究GIS中不同缺陷所激发的局放信号的特征,设计了4种典型放电缺陷模型来模拟GIS中可能存在的绝缘缺陷,通过试验从超高频(UHF)信号中提取出8个统计特征参数来描述放电的典型特征。基于支持向量机(SVM)算法设计构造了4分类SVM模型,采取投票的方式识别放电类型。实验结果表明,该方法识别率高,能有效识别4种GIS中的典型放电。 相似文献
5.
本文论述了安装在现场的300KVGIS的不同绝缘故障模拟试验的结果。包括不同故障产生的局部放电的大小和波形以及现场探测的数值。 相似文献
6.
7.
8.
9.
10.
非本征法布里-帕罗干涉(EFPI)光纤超声传感器可用于气体绝缘全封闭组合电器(GIS)内部的局部放电超声信号检测及模式识别研究,相较于传统的压电式传感器,具有灵敏度高、抗干扰能力强等优点。基于此,文中在充有0.4 MPa SF6气体的GIS腔体内设置尖端、金属颗粒、悬浮和沿面4种典型的局部放电模型,创新性地利用EFPI传感器对放电超声信号进行检测,提取单次超声脉冲信号波形特征形成特征参数数据库,分别应用概率神经网络(PNN)算法和支持向量机(SVM)算法进行模式识别并比较分析。EFPI传感器检测到的超声信号特征突出,在提取特征参数的基础上,2种模式识别算法均能达到85%以上的平均识别率,且SVM的识别效果要优于PNN。 相似文献
11.
根据UHF信号特征的GIS局部放电模式识别 总被引:2,自引:0,他引:2
综合自适应遗传算法和BP算法各自的优点,构造了基于两者混合训练的神经网络,应用到GIS局部放电超高频的模式识别。分别用基于自适应遗传算法的神经网络、基于BP算法的神经网络,以及基于自适应遗传算法和BP算法混合训练的神经网络对用局部放电超高频检测系统检测到的GIS中4种模式的局部放电进行了识别。实验结果表明,基于自适应遗传算法和BP算法混合训练的神经网络提高了神经网络训练的收敛速度,保证了收敛的可靠性,具有较高的识别率和较强的泛化能力。 相似文献
12.
几种特征选择方法在局部放电模式识别中的应用 总被引:2,自引:0,他引:2
局部放电模式识别的输入特征量选择是非常关键的步骤。针对油纸绝缘中5种典型局部放电类型,从其相间局部放电(PRPD)谱图中提取出31个统计算子。分别运用K-W检验、类内类间距离比、顺序前进法以及遗传算法等4种方法对这些算子进行了选择优化。分别用这些选取的特征量组合作为输入向量,通过BP神经网络这个统一的模式识别技术来比较研究这4种特征选择方法,结果表明,顺序前进法和遗传算法由于考虑了特征量之间的相关性,所选择的特征量优于另外2种方法。 相似文献
13.
现有的GIS局部放电类型诊断主流采用单一分类器直接进行多类型划分,该方法对类间交叉重叠区域敏感,且受单一分类器固有缺陷的影响。文中提出了一种深度分层放电类型诊断方法,以逐层二分决策实现多类划分,在分层决策中优先进行良性样本的区分,将交叉重叠区域分类问题放至深层节点进行,且在每个二分节点处可择优选用不同分类器。设计了5种典型的GIS放电模型,从放电PRPD谱图、U-Δt序列谱图的统计特征、图像特征出发,构造了16个特征参量,探索了不同分层深度值下的诊断分类正确率,并与传统直接分类方法进行了比较。结果表明:深度分层诊断相比于直接识别诊断,总体识别正确率提高了20%,尤其对直接识别诊断误判率大的沿面、颗粒类缺陷,识别正确率提升明显(30%)。 相似文献
14.
粒子群优化自适应小波神经网络在带电局放信号识别中的应用 总被引:1,自引:0,他引:1
XLPE中压电缆局部放电(PD)带电检测获得的信号可能源于电缆本体、电缆终端头,也可能来自于与之连接的开关柜中的电晕放电或表面放电等。由于不同来源的PD信号,对设备的危害不同,其判断标准也有所不同,故有必要对PD信号的来源进行识别。本文提出一种基于自适应小波神经网络的XLPE电缆PD识别方法,构建了一个4层自适应小波神经网络模型,对实验室获得的PD波形进行识别;提出使用粒子群算法先进行一次优化,后使用BP算法进行二次优化的训练方法;讨论了不同网络结构及小波函数对网络性能的影响。研究结果表明PSO-BP组合优化的自适应小波神经网络的训练效果明显优于单独使用BP算法,能够准确、可靠的对PD信号进行识别。 相似文献
15.
在气体绝缘组合电器(gas insulated switchgear,GIS)实体模型中分别放置了针-板、悬浮金属颗粒和绝缘子表面固定金属颗粒放电模型,用超声波传感器采集到其放电波形。对放电波形提取的特征向量进行局部线性嵌入(local linear embedding,LLE)算法降维处理,用降维后的向量作为输入对BP_Adaboost分类器进行训练和测试类型识别。识别结果表明,用这样方法进行GIS绝缘缺陷类型识别可以在减少计算量的同时保持较高的识别率,说明了其在局部放电模式识别应用中的有效性。 相似文献
16.
采用自适应遗传算法(AGA)作为神经网络的学习算法,对实验室中变压器超高频局部放电自动识别系统检测到的5种放电类型进行了模式识别。实验结果表明,AGA神经网络解决了BP神经网络对初始权值敏感、收敛速度慢和容易局部收敛的问题,具有较高的识别率和较强的推广能力,可以很好的应用于变压器超高频局部放电的模式识别中。 相似文献
17.
18.
基于多特征信息融合技术的局部放电模式识别研究 总被引:1,自引:0,他引:1
针对单一特征信息分析模式独立辨识不能有效、可靠地判断出局部放电(PD)类型致使识别"误诊"的问题,以及为了最大限度地利用特高频(UHF)传感器所获取的丰富绝缘状态信息,利用放电时间、放电相位分布及UHF能量与放电量相关性等3类特征信息的共性和差异性进行融合互补,提出一种基于多特征信息融合的PD模式识别方法。通过在一套三相分箱式真实GIS(ZF-10-126)试验平台上实测所得的PD试验信息进行分析其结果表明:3类特征信息独立辨识各类缺陷的准确度存在较大差异性和不确定性,但有着各自优势。而采用D-S证据理论进行3类特征信息融合PD模式识别技术,可对3类特征信息独立识别法各自存在的不足进行互补,具有更高更准确的辨识率和可靠性。至此验证了所提方法的有效性与正确性。 相似文献