首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Modulation by 5-hydroxytryptamine receptor agonists of the NMDA responses of ventral spinal cord neurones was studied by use of the whole-cell patch-clamp technique. 2. In a Mg-free solution containing tetrodotoxin and glycine, 5-hydroxytryptamine (5-HT, 10-100 microM) reduced the NMDA response, the block increasing with hyperpolarization. Kainate responses were little affected. 3. Some classical agonists of 5-HT receptors induced similar blocking effects. At 10 microM, both a selective agonist of 5-HT2 receptors, (+/-)-2,5-dimethoxy-4 iodo amphetamine (DOI), and a selective agonist of some 5-HT1 receptors, (+/-)-8-hydroxy-2(n-dipropyl amino) tetralin (8-OH-DPAT), induced pronounced blocking effects, of 48% and 33% respectively at -100 mV, whereas another 5-HT1 agonist, 5-carboxamidotryptamine (5-CT) was ineffective. At 100 microM, 5-methoxytryptamine (5-MeOT) induced a complete block of the NMDA responses recorded at -100 mV. The order of potency was: 5-MeOT congruent to DOI > 8-OH-DPAT > 5-HT > 5-CT. 4. Neither spiperone nor ketanserin (1 microM) prevented the blocking effect of 5-HT or DOI. 5. Prolonged preincubations with 5-HT did not block the response if NMDA was applied without 5-HT. When 5-HT agonists were applied both by preincubation and with NMDA, the degree of block increased during the NMDA application. 6. Lowering the NMDA concentration (from 100 to 20 microM) slightly decreased the blocking effect of 5-MeOT. 7. External Mg2+ ions (1 mM) also reduced the blocking effects of 5-HT and 5-MeOT. 8. The blocking effects described appear to be independent of classical 5-HT receptors. Their voltage-dependence suggests a mechanism of open channel block consistent with all the results obtained.  相似文献   

2.
5-HT autoreceptors involved in the regulation of 5-HT release in the guinea pig dorsal raphe nucleus have been studied in comparison with those in the hypothalamus. In vitro release was measured in slices of raphe and hypothalamus prelabelled with [3H]5-HT, superfused with Krebs solution and depolarized electrically. The non-selective 5-HT receptor agonist, 5-carboxamidotryptamine (5-CT) (0.1-10 nM for raphe: 1-100 nM for hypothalamus) and antagonist, methiothepin (10-1000nM), decreased and increased, respectively, the release of [3H]5-HT evoked by electrical stimulation in either of these regions when given alone. The selective 5-HT1B/D receptor antagonist, GR127935 (100-1000 nM), and the 5-HT1D receptor antagonist, ketanserin (300-1000 nM), had no significant effect on this release in either of these regions. Methiothepin and GR127935 (100-1000 nM) shifted to the right the concentration-effect curve of 5-CT in both the raphe and the hypothalamus. At 300 nM, ketanserin shifted to the right the concentration-effect curve of 5-CT in the raphe but did not modify the 5-CT curve in the hypothalamus. In microdialysis experiments ketanserin, applied locally at 10 microM, increased the extracellular levels of 5-HT in the dorsal raphe nucleus of the freely moving guinea pig, whereas 5-HT levels were unchanged in the hypothalamus. Ketanserin at 1 microM did not affect the decrease in 5-HT output induced by the selective 5-HT1B/D receptor agonist, naratriptan (used at 10 microM in raphe and 0.1 microM in hypothalamus), in the raphe or the hypothalamus. In the raphe, WAY100635, a 5-HT1A receptor antagonist, at 1 microM, did not prevent naratriptan (10 microM) from reducing the extracellular levels of 5-HT. These results suggest that, in the conditions used in this study, the release of 5-HT in the dorsal raphe nucleus is possibly modulated in part by 5-HT1B receptors but essentially the control is through 5-HT receptors whose subtype is still to be determined. In the hypothalamus, however, it is clear that only 5-HT1B receptors are involved in the modulation of 5-HT neurotransmission.  相似文献   

3.
1. The depression of synaptic transmission by the specific metabotropic glutamate receptor (mGlu) agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylate ((1S,3R)-ACPD) was investigated in area CA1 of the hippocampus of 4-10 week old rats, by use of grease-gap and intracellular recording techniques. 2. In the presence of 1 mM Mg2+, (1S,3R)-ACPD was a weak synaptic depressant. In contrast, in the absence of added Mg2+, (1S,3R)-ACPD was much more effective in depressing both the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated components of synaptic transmission. At 100 microM, (1S,3R)-ACPD depressed the slope of the field excitatory postsynaptic potential (e.p.s.p.) by 96 +/- 1% (mean +/- s.e.mean; n = 7) compared with 23 +/- 4% in 1 mM Mg(2+)-containing medium (n = 17). 3. The depressant action of 100 microM (1S,3R)-ACPD in Mg(2+)-free medium was reduced from 96 +/- 1 to 46 +/- 6% (n = 7) by the specific NMDA receptor antagonist (R)-2-amino-5-phosphonopentanoate (AP5; 100 microM). 4. Blocking both components of GABA receptor-mediated synaptic transmission with picrotoxin (50 microM) and CGP 55845A (1 microM) in the presence of 1 mM Mg2+ also enhanced the depressant action of (1S,3R)-ACPD (100 microM) from 29 +/- 5 to 67 +/- 6% (n = 6). 5. The actions of (1S,3R)-ACPD, recorded in Mg(2+)-free medium, were antagonized by the mGlu antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG). Thus, depressions induced by 30 microM (1S,3R)-ACPD were reversed from 48 +/- 4 to 8 +/- 6% (n = 4) by 1 mM (+)-MCPG. 6. In Mg(2+)-free medium, a group I mGlu agonist, (RS)-3, 5-dihydroxyphenylglycine (DHPG; 100 microM) depressed synaptic responses by 74 +/- 2% (n = 18). In contrast, neither the group II agonists ((2S,1'S,2'S)-2-(2'-carboxycyclopropyl)glycine; L-CCG-1; 10 microM; n = 4) and ((2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine; DCG-IV; 100 nM; n = 3) nor the group III agonist ((S)-2-amino-4-phosphonobutanoic acid; L-AP4; 10 microM; n = 4) had any effect. 7. The depolarizing action of (1S,3R)-ACPD, recorded intracellularly, was similar in the presence and absence of Mg(2+)-AP5 did not affect the (1S,3R)-ACPD-induced depolarization in Mg(2+)-free medium. Thus, 50 microM (1S,3R)-ACPD induced depolarizations of 9 +/- 3 mV (n = 5), 10 +/- 2 mV (n = 4) and 8 +/- 2 mV (n = 5) in the three respective conditions. 8. On resetting the membrane potential in the presence of 50 microM (1S,3R)-ACPD to its initial level, the e.p.s.p. amplitude was enhanced by 8 +/- 3% in 1 mM Mg2+ (n = 5) compared with a depression of 37 +/- 11% in the absence of Mg2+ (n = 4). Addition of AP5 prevented the (1S,3R)-ACPD-induced depression of the e.p.s.p. (depression of 4 +/- 5% (n = 5)). 9. It is concluded that activation by group 1 mGlu agonists results in a depression of excitatory synaptic transmission in an NMDA receptor-dependent manner.  相似文献   

4.
G-protein activation by different 5-HT receptor ligands was investigated in h5-HT1A receptor-transfected C6-glial and HeLa cells using agonist-stimulated [35S]-GTP gamma S binding to membranes in the presence of excess GDP. 5-HT (10 microM) stimulated [35S]GTP gamma S binding in the C6-glial membrane preparation to a larger extent than in the HeLa preparation; maximal responses with 30 microM GDP were 490 +/- 99 and 68 +/- 12%, respectively. With the 5-HT receptor agonists that were being investigated, the two preparations displayed the same rank order of potency for stimulation of [35S]GTP gamma S binding. In the C6-glial preparation at 0.3 microM GDP, the rank order of maximal effects was: 5-HT (1.00) > 8-OH-DPAT (0.90) = R(+)-8-OH-DPAT (0.87) = 5-CT (0.86) = L694247 (0.84) > S(-)8-OH-DPAT (0.68) = buspirone (0.67) = spiroxatrine (0.67) = flesinoxan (0.64) > ipsapirone (0.53) = (-)-pindolol (0.50) > SDZ216525 (0.25). However, differences in maximal response in the C6-glial preparation were magnified by increasing the GDP concentrations, indicating that the activity state of G-proteins can affect the maximal response. With the exception of 5-CT and L694247, increasing the amount of GDP to 30 microM and higher concentrations resulted in an attenuation of both the ligand's maximal effect (24 to 56%) and apparent potency (6 to 24-fold). Each of the [35S]GTP gamma S binding responses was mediated by a 5-HT1A receptor as indicated by the competitive blockade by WAY100635 and spiperone. Only 5-CT and L694247 in some conditions displayed an efficacy similar to that of 5-HT at the h5-HT1A receptor; the other agents with intrinsic activity are partial agonists at this receptor. The data also suggest that the activity state of the G-proteins is involved in the maximal effects that can be produced by activating the h5-HT1A receptor.  相似文献   

5.
Excitatory amino acids (EAA) acting on N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate receptors play an important role in synaptic transmission in the spinal cord. Quantitative autoradiography and physiological experiments suggest that NMDA receptors are localized mainly in lamina II while kainate and AMPA receptors are found on both dorsal and ventral horn neurons. However the cell types expressing EAA receptors and their laminar distribution is not known. We have used a cobalt uptake method to study the morphology and distribution of spinal cord neurons expressing AMPA, kainate, or NMDA excitatory amino acid receptors in the lumbar enlargement of the rat spinal cord. The technique involved superfusion of hemisected spinal cords of 14 day-old rat pups in vitro with excitatory amino acid receptor ligands in the presence of CoCl2. Cobalt has been shown to enter cells through ligand-gated ion channels in place of Ca2+. Cells which accumulated cobalt ions following activation by ionotropic excitatory amino acid receptors were visualized histochemically. The cobalt uptake generated receptor-specific labeling of cells, as the NMDA receptor antagonist D-(-)-2-amino-(5)-phosphonovaleric acid (D-AP-5) (20 microM) blocked the NMDA, but not kainate-induced cobalt uptake. The kainate-induced cobalt labeling was reduced by the non-selective excitatory amino acid receptor antagonist kynurenic acid (4 mM). Passive opening of the voltage-gated Ca(2+)-channels by KCl (50 mM) did not result in cobalt uptake, indicating that cobalt enters the cells through ligand-gated Ca(2+)-channels. AMPA (500 microM), kainate (500 microM), or NMDA (500 microM) each induced cobalt uptake with characteristic patterns and distributions of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal staining. Overall, kainate induced cobalt uptake in the greatest number of neuronal perikarya while NMDA-induced uptake was the lowest. AMPA and kainate, but not NMDA superfusion, resulted in cobalt labeling of glial cells. Our results show that the cobalt uptake technique is a useful way to study the morphology and distribution of cells expressing receptors with ligand-gated Ca2+ channels.  相似文献   

6.
The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (+/-)-pindolol (10 microM)-insensitive [3H]5-CT ([3H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 microM) displayed a pharmacological profile similar to the recombinant 5-HT7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (+/-)-pindolol (10 microM)-insensitive [3H]5-CT recognition sites also resembled, pharmacologically, the 5-HT7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [3H]5-CT binding to residual, possibly, 5-HT1A sites. Competition for this [3H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT7 receptor. Saturation studies also indicated that (+/-)-pindolol (10 microM)/WAY 100635 (100 nM)-insensitive [3H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (Bmax=33.2+/-0.7 fmol mg(-1) protein, pKd=8.78+/-0.05, mean+/-S.E.M., n=3). The development of this 5-HT7 receptor binding assay will aid investigation of the rat native 5-HT7 receptor.  相似文献   

7.
Incubation of slices of neonatal rat spinal cord with nitric oxide donor compounds produced marked elevations in cyclic guanosine 3',5' monophosphate (cGMP) levels. The excitatory amino acid receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) produced smaller increases, which were blocked by the nitric oxide synthase (NOS) inhibitor L-NG-nitroarginine (NOArg), indicating that these cGMP responses were mediated by nitric oxide. Immunocytochemistry revealed that, in response to NMDA, cGMP accumulated in a population of small cells and neuropil in laminae II and III of the dorsal horn. This area was also shown, by reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry, to contain NOS. These observations suggest that, in the rat spinal cord, NMDA receptor activation is linked to the formation of NO and, hence, of cGMP. This pathway is located selectively in the superficial dorsal horn, consistent with a role in the processing of nociceptive signals.  相似文献   

8.
1. In anaesthetized dogs, intra-left atrial administration of 5-hydroxytryptamine (5-HT) and selected tryptamine analogues (5-carboxamidotryptamine, 5-CT; 5-methyl tryptamine, 5-MT; alpha-methyl 5-hydroxytryptamine, alpha-HT; sumatriptan, Sum) in the presence of ketanserin and MDL72222 (5-HT2 and 5-HT3 receptor antagonists, respectively), produced dose-related changes in carotid, coronary and renal vascular conductance mediated by vascular 5-HT1-like receptors. 2. In the carotid vascular bed, 5-HT, 5-MT, alpha-HT and Sum were vasoconstrictors with a rank order of potency (comparing ED50 values) of 5-HT = Sum > 5-MT > alpha-HT. By contrast in this vascular bed, 5-CT was a potent vasodilator. 3. In the coronary vascular bed, 5-HT, 5-CT, 5-MT and alpha-HT were vasodilators with a rank order of potency (comparing ED50 values) of 5-CT > 5-HT > 5-MT > alpha-HT. In this vascular bed, Sum was without effect. 4. In the renal vascular bed, 5-HT, 5-CT, 5-MT, alpha-HT and Sum were vasoconstrictors with a rank order of potency (comparing ED50 values) of 5-CT > 5-HT > Sum > 5-MT > alpha-HT. 5. The coronary (and carotid) vasodilator responses to 5-CT were antagonized by the 5-HT1-like receptor antagonists, spiperone (1 mg kg-1) and methiothepin (0.1 mg kg-1), whereas the renal vasoconstrictor responses to this tryptamine analogue were antagonized only by methiothepin. 6. It is concluded from these studies that agonist finger-printing in vivo, using tryptamine analogues,identifies and confirms the functional presence of at least two pharmacologically distinct subtypes of the 5-HT1-like receptor in the intact canine cardiovascular system. These two subtypes are located on the vascular smooth muscle and mediate direct vasoconstriction and vasodilatation responses in vivo.7. In addition, these studies confirm that the distribution of these subtypes within the major vascular beds, shows a marked heterogeneity. The carotid vascular responses to the tryptamine analogue sindicate the presence of both the vasodilator and the vasoconstrictor subtypes. The coronary vascular responses to these analogues are, however, consistent with presence of the vasodilator subtype, only. By contrast, the renal vascular responses to these analogues indicates only the presence of the vasoconstrictor subtype.  相似文献   

9.
The technique of intracellular recording was used to examine the effect of M100907 (formerly MDL 100907), a highly selective 5-HT2A receptor antagonist and a potential antipsychotic drug (APD), on N-methyl-D-aspartate (NMDA) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated responses in pyramidal cells of the rat medial prefrontal cortex in in vitro brain slice preparations. Bath administration of M100907, but not its inactive stereoisomer M100009, produced a 350% to 550% increase of NMDA-induced responses in a concentration-dependent manner with an EC50 value of 14 nmol/L, reminiscent of the action of clozapine. M100907 did not alter AMPA responses. Moreover, M100907 significantly increased the amplitude and duration of excitatory postsynaptic potentials and currents evoked by electrical stimulation of the forceps minor. We have generated several lines of evidence indicating that M100907 enhances glutamate receptor-mediated neurotransmission in pyramidal cells of the medial prefrontal cortex by facilitating NMDA-induced release of excitatory amino acids. The robust potentiation of NMDA receptor-mediated neurotransmission may explain, at least partly, the potential antipsychotic action of this compound. Furthermore, if M100907 proves to be an effective APD and if our findings can be extended to other atypical APDs, which are known to possess a relatively high affinity to 5-HT2A receptors, they may account for the purported efficacy of atypical APDs in alleviating some negative symptoms such as cognitive and executive functions.  相似文献   

10.
Whole-cell patch-clamp technique of freshly isolated rat spinal dorsal horn (DH) neurons, intracellular recording from DH neurons in a slice preparation, and high performance liquid chromatography with fluorimetric detection of release of endogenous glutamate and aspartate from spinal cord slice following activation of primary afferent fibers were employed to investigate interactions between excitatory amino acids (EAA) and tachykinins [substance P (SP) and neurokinin A (NKA)]. Potentiation of N-methyl-D-aspartate (NMDA)-, quisqualate (QA)- and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, but not kainate-induced currents by SP and NKA was found. Spantide II, a claimed novel nonselective tachykinin antagonist, effectively blocked the SP (2 nM)-induced potentiation of the responses of DH neurons to NMDA. In the presence of glycine (0.1 microM), the SP-evoked increase of the NMDA-induced current was prevented. However, 7-chlorokynurenic acid (2 microM), a competitive antagonist at the glycine allosteric site of the NMDA receptor, led to the reestablishment of the SP effect. Brief high frequency electrical stimulation of primary afferent fibers produced a long-lasting potentiation of presumed monosynaptic and polysynaptic excitatory postsynaptic potentials and sustained enhanced release of endogenous glutamate (218.3 +/- 66.1%) and aspartate (286.3 +/- 58.0%). Possible functional implications of the observed phenomena are discussed in relation to transmission and integration of sensory information, including pain.  相似文献   

11.
1. Whole cell synaptic currents were recorded under voltage clamp from a total of 54 ventral horn neurones held near to their resting potential by the patch clamp technique in immature rat spinal cord preparations in vitro. Twenty eight neurones were identified, by antidromic invasion from ventral roots, as motoneurones. Excitatory postsynaptic currents (e.p.s.cs) of peak amplitude -480 pA +/- 66 s.e. mean and -829 +/- 124 pA were evoked respectively from the unidentified ventral horn neurones and the motoneurones in response to maximal activation of the segmental dorsal root. 2. The e.p.s.cs were depressed reversibly by the metabotropic glutamate agonists 1S3S-1-aminocyclopentane-1,3-dicarboxylate (1S3S-ACPD) (EC50 17.1 microM +/- 0.3 s.e. mean, n = 14) and L-2-amino-4-phosphonobutanoate (L-AP4) (EC50 = 2.19 +/- 0.19 microM, n = 15). Since both agonists independently produced more than 90% depression it is likely that the receptors that mediate their effects are present on the same presynaptic terminals. 3. When the Mg2+ concentration was raised from 0.75 mM to 2.75 mM together with the addition of 50 microM D-2-amino-5-phosphonopentanoate (AP5), a treatment which would increase the proportion of monosynaptic component in the e.p.s.c. the concentration-effect plots for both 1S3S-ACPD (EC50 1.95 +/- 0.4 microM, n = 8) and L-AP4 (EC50 0.55 +/- 0.20 microM, n = 7) were shifted to the left, suggesting that monosynaptic e.p.cs of primary afferents to ventral horn neurones are more susceptible to L-AP4 and 1S3S-ACPD than are other synapses in polysynaptic pathways. 4. lS3S-ACPD (20 and 50 microM) also caused mean sustained inward currents of 95 +/- 31 pA (n = 6) and248 +/- 49 pA (n = 10) respectively. In the combined presence of AP5 (50 microM) and Mg2+ (2.75 mM) themean response to 50 microM lS3S-ACPD was reduced to 106+/- 18 pA (n = 4). In the presence of tetrodotoxin(1 microM) the corresponding value was 48 +/- 6 pA (n = 4). Similar sustained inward currents produced by N-methyl-D-aspartate (NMDA) were almost abolished to < 10 pA in the presence of AP5 and 2.75 mMMg2+. In the presence of tetrodotoxin the maximum inward current produced by NMDA was undiminished. Thus a large component of the excitatory action of lS3S-ACPD was mediated at non-NMDA receptors both directly at the patch-clamped neurones and indirectly by synaptic relay.  相似文献   

12.
The effects of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1-300 microM) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100-300 microM) and AMPA (30-300 microM), however, subsequently inhibited acetylcholine release. NMDA (100 microM)-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1-10 microM), whereas the 10 microM AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-30 microM). NMDA (100 microM)-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor L-nitroarginine (1-100 microM). Tetrodotoxin (0.5 microM) prevented the facilitatory effect of 3 microM NMDA and AMPA, but left unchanged that of 30 microM NMDA and 100 microM AMPA. Acetylcholine release from synaptosomes was stimulated by KCl (7.5-100 mM) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 mM KCl effect at 1 microM and 0.01 microM, but were ineffective at 100 microM and 10 microM, respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 microM NMDA and 0.01 microM AMPA were antagonized by CPP (0.0001-1 microM) or dizocilpine (0.0001-10 microM) and by CNQX (0.001-1 microM), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and postsynaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

13.
Glutamate-gated ion channels mediate excitatory synaptic transmission in the central nervous system and are involved in synaptic plasticity, neuronal development and excitotoxicity (5,24). These ionotropic glutamate receptors were classified according to their preferred agonists as AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), KA (kainate), and NMDA (N-methyl-D-aspartate) receptors [Trends Pharmacol. Sci., 11 (1990) 25-33]. The present study of NMDA receptor channels expressed in acutely isolated spinal dorsal horn (DH) neurons of young rat reveals that they are subject to modulation through the adenylate cyclase cascade. Whole-cell voltage-clamp recording mode was used to examine the effect of adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) on the responses of DH neurons to NMDA. Whole-cell current response to NMDA was enhanced by 8 Br-cAMP, a membrane permeant analog of cAMP or by intracellular application of cAMP or catalytic subunit of PKA.  相似文献   

14.
1. Desensitization is an important characteristic of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type. 2. Stimulation of N-methyl-D-aspartate (NMDA) or AMPA receptors in cerebellum results in increased production of cyclic GMP. We have investigated AMPA receptor desensitization in vivo by monitoring extracellular cyclic GMP during intracerebellar microdialysis in conscious unrestrained adult rats. 3. Local infusion of AMPA (10 to 100 microM) caused dose-related elevations of cyclic GMP levels. The effect of AMPA was prevented by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG). 4. In the absence of AMPA, DNQX lowered the basal levels of cyclic GMP whereas the NMDA receptor channel antagonist dizocilpine (MK-801) was ineffective. 5. Cyclothiazide, a blocker of AMPA receptor desensitization, potentiated the cyclic GMP response to exogenous AMPA. Moreover, cyclothiazide (100-300 microM) produced on its own dose-dependent elevations of extracellular cyclic GMP. The cyclothiazide-induced response was prevented not only by DNQX but also by MK-801. 6. While the cyclic GMP response elicited by AMPA was totally insensitive to MK-801, the response produced by AMPA (10 microM) plus cyclothiazide (30 microM) was strongly attenuated by the NMDA receptor antagonist (30 microM). 7. The results suggest that (a) AMPA receptors linked to the NO-cyclic GMP pathway in the cerebellum can undergo desensitization in vivo during exposure to exogenous AMPA; cyclothiazide inhibits such desensitization; (b) AMPA receptors (but not NMDA receptors) are 'tonically' activated and kept in a partly desensitized state by endogenous glutamate; (c) if cyclothiazide is present, activation of AMPA receptors may permit endogenous activation of NMDA receptors.  相似文献   

15.
Serotonergic modulation of sensory neurons in Aplysia and their synaptic connections with follower cells has been used extensively as a model system with which to study mechanisms underlying neuronal plasticity. Serotonin (5-HT)-induced facilitation of sensorimotor connections is due to at least two processes: a process related to the broadening of presynaptic action potentials and a spike-duration-independent (SDI) process that may involve mobilization of transmitter. We have examined the relationship between spike broadening and synaptic facilitation of relatively nondepressed sensorimotor connections in the intact pleural-pedal ganglia. Previously, 5-HT-induced spike broadening in the sensory neuron was shown to be primarily due to the modulation of a voltage-dependent K+ current (Ik.v). Low concentrations (20-30 microM) of 4-aminopyridine (4-AP) were used to rather selectively block Ik.v. 4-AP increased spike duration in the sensory neuron and the excitatory postsynaptic potential (EPSP) in the motor neuron. The temporal development of 4-AP-induced spike broadening closely parallel that of synaptic facilitation. Thus spike broadening via the reduction of Ik.v can directly contribute to synaptic facilitation. The relationship between spike broadening induced by 5-HT (10 microM) and enhancement of the EPSP was also analyzed. We found that components of 5-HT-induced synaptic facilitation preceded the development of 5-HT-induced spike broadening. The comparison between the results of 4-AP and 5-HT revealed that the SDI processes made an important contribution to the rapid development of 5-HT-induced synaptic facilitation and that spike broadening made an important contribution to its maintenance. The SDI process and a slowly developing component of 5-HT-induced spike broadening are mediated, at least in part, by the activation of protein kinase C (PKC). Application of phorbol 12,13-diacetate (PDAc), an activator of PKC, partially mimicked the effects of 5-HT on spike duration and the EPSP. PDAc-induced enhancement of the EPSP preceded the slower development of PDAc-induced spike broadening. Like 5-HT, PDAc enhanced the EPSP via both spike broadening and the SDI processes. In addition, a 15-min exposure to PDAc occluded 5-HT-induced enhancement of the EPSP, suggesting that PKC and 5-HT engage similar or overlapping mechanisms. On the basis of these results and others, we propose a time-dependent hypothesis for the 5-HT-induced synaptic facilitation of nondepressed synapses, in which multiple second-messenger/protein kinase systems mediate the actions of 5-HT via both spike-duration-dependent and SDI processes.  相似文献   

16.
In an in vitro spinal cord slice preparation whole cell electrophysiological recordings of rat superficial dorsal horn neurons responding differentially to glutamate (Glu) and N-methyl-D-aspartate (NMDA) were investigated systematically for the role of kainate (KA) receptors in modulating their activity. In these neurons, coapplication of Glu and NMDA, as well as application of Glu immediately before NMDA, induced long- and short-lasting depressions of NMDA-induced currents as well as depression of NMDA-receptor-mediated excitatory postsynaptic currents. KA applied before NMDA mimicked Glu-induced attenuating effects. Furthermore, the low-affinity KA receptor antagonist 5-nitro-6,7,8,9- tetrahydrobenzo[G]indole-2,3-dione-3-oxime potentiated Glu-induced NMDA-receptor-mediated currents in neurons responding differentially to Glu and NMDA. These results provide evidence for a novel mechanism, which may relate to classical long-term depression, involving low-affinity KA receptors in long-lasting modulation of NMDA-receptor-mediated currents. This implies a physiological role of KA receptors in long-term modulation of sensory transmission in the superficial dorsal horn of rat spinal cord.  相似文献   

17.
18.
1. We investigated whether contractile responses evoked by 5-HT1D receptor agonists were influenced by the endothelium (E) and nitric oxide (NO) in the rabbit isolated saphenous vein. 2. Saphenous vein rings were set up for isometric tension recording in oxygenated (5% CO2 in O2) Krebs solution (pH 7.4) containing (10(-6) M): idazoxan (1), indomethacin (10), ketanserin (0.1), prazosin (10), and N(omega) nitro-L-arginine methyl ester (L-NAME; 0 or 10), a NO synthase inhibitor. In some experiments, the E was removed mechanically. 3. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT) and sumatriptan (Sum) contracted rabbit saphenous vein rings in the potency order (pD2 range) of 5-CT(7.2-7.6) > 5-HT(6.2-7.1) > Sum(5.0-5.8), irrespective of the presence or absence of the E or L-NAME (n = 9-37 per group) indicating that the potencies of the 3 agonists were not significantly affected by either the E or L-NAME. 4. Efficacy, as assessed by the maximal contractile response (Emax), was significantly greater for Sum compared to 5-HT and 5-CT with intact E irrespective of the presence (77 +/- 3, 62 +/- 3, and 50 +/- 3 mN respectively; P < 0.05 Sum versus 5-HT and 5-CT) or absence (26 +/- 3, 14 +/- 4, and 13 +/- 2 mN respectively; P < 0.05 Sum versus 5-HT and 5-CT) of L-NAME. In E-denuded rings, the Emax values were all higher than in E-intact rings and did not differ between the 3 agonists (36 +/- 4, 37 +/- 4, and 36 +/- 5 mN for Sum, 5-HT and 5-CT, respectively; P > 0.5 between the 3 agonists) indicating that an endothelium-derived relaxing factor (EDRF) counteracted the constrictor activities of the 5-HT1D receptor agonists and raising the possibility that a component of the Sum-induced contractile responses was E-dependent. Without E, the presence of L-NAME did not significantly affect the Emax values of the 3 agonists (41 +/- 4, 41 +/- 5, and 41 +/- 4 mN for Sum, 5-HT, and 5-CT respectively; P > 0.5 between the 3 agonists) indicating that the NO synthase inhibited was of endothelial origin. 5. Potentiation of the Emax of the 3 agonists by L-NAME was significantly albeit partially reversed by L-arginine (10(-2) M) indicating that NO synthase was indeed inhibited by L-NAME. Furthermore, in the presence of E, potentiation of Emax of the 3 agonists by L-NAME was mimicked by methylene blue (10(-5) M) providing further evidence that NO was involved in the attenuation by the E of the contractile responses induced by the 5-HT1D receptor agonists. 6. In the presence of an intact E and L-NAME, contractile responses elicited by 5-HT and Sum were competitively antagonized by the non-selective 5-HT1D receptor antagonist, methiothepin (pA2: 9.4 and 8.8; slopes: 0.66 and 0.81, respectively) and the highly selective 5-HT1D receptor antagonist, GR 127935 (pA2: 9.0 in each case; slopes: 1.04 and 0.93, respectively) indicating that contractions were mediated through activation of a single population of 5-HT1D receptors. Contractile responses elicited by 5-CT were also competitively antagonized by methiothepin and GR 127935, but non parallel rightward shifts of the concentration-response curves were observed suggestive of the involvement of additional but as yet unidentified receptors in mediating the 5-CT-induced responses. 7. In conclusion, the efficacy, but not the potency, of 5-HT, 5-CT and Sum in evoking 5-HT1D receptor-mediated contractile responses are subject to a substantial inhibitory influence of the E and of an EDRF (probably NO).  相似文献   

19.
We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation using N-BOC protected ATAA and (R)- and (S)-phenylethylamine. Enantiomeric purities (ee > 98%) of (R)- and (S)-ATAA were determined using the Crownpak CR(-) and CR(+) columns, respectively. The absolute configuration of (R)-ATAA was established by an X-ray crystallographic analysis of the (R)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation (Ki > 1,000 microM).  相似文献   

20.
Picotamide is a dual thromboxane (Tx) A2 receptor antagonist/Tx synthase inhibitor although some observations suggest an anti-vasoconstrictor effect independent of TxA2 inhibition/antagonism. The aim of our study was to assess whether picotamide antagonises vascular contractions induced by different vasoactive substances in vitro. Picotamide inhibited competitively the contraction of rabbit aortic rings induced by the TxA2 mimetic U46619 (pA2 = 3.59) but also the contractions induced by phenylephrine (pA2 = 3.93) and serotonin (5-HT) (pA2 = 5.81) although in a not competitive way. Picotamide did not inhibit potassium-induced contractions, thus excluding aspecific effects on vascular smooth muscle. Picotamide inhibited 5-HT-induced platelet aggregation in vitro with an IC50 (212 microM) similar to that found when other aggregating stimuli are used, but it did not affect shape change (IC50 > 1 mM) suggesting that the effects of picotamide can not be ascribed to 5-HT2-receptor antagonism; in the same experimental conditions neither a Tx-receptor antagonist (BM13.177) nor a dual Tx-receptor antagonist/synthase inhibitor (ridogrel) affected 5-HT-induced platelet responses. Our studies demonstrate that picotamide exerts antivasoconstrictor and platelet inhibitory effects unrelated to TxA2 antagonism. This activity may contribute to the anti-thrombotic/anti-ischaemic effects of the drug in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号