首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiotensin II has been shown to be mitogenic in various cell types. In cultured neonatal cardiomyocytes, we have demonstrated that angiotensin II causes hypertrophy, not hyperplasia. However, fetal or neonatal cardiomyocytes exhibit limited proliferation in primary culture, and are mitotically less potent. In order to determine whether angiotensin II is simply a hypertrophic or hyperplastic growth factor for mitotically-potent cardiomyocytes, we analysed [3H]-thymidine uptake and cell cycle-regulated gene expression using SV40 large T-transformed AT-1 cardiomyocytes. Angiotensin II, alone and in combination with other growth factors, increased [3H]-thymidine uptake in a dose-dependent manner. The mRNA expression of G1 cyclins (Cyclin C, D1, D2, D3) and histone H1-kinase activity by CDK2 increased 6 h after angiotensin II stimulation. Western blot analysis revealed cyclin B1 expression after 18 h , which peaked at 30 h. Histone H1-kinase activity by cdc2 was also increased by angiotensin II, and peaked at 24-36 h, indicating that these changes were cell cycle dependent. Double immunofluorescent photography showed that AT-1 cells incorporated BrdU, and expressed cdc2 by angiotensin II stimulation. [3H]-thymidine and BrdU uptake were blocked by losartan, but not by PD123319. In contrast with neonatal cardiomyocytes, angiotensin II potentiated DNA synthesis and induced cell cycle regulated gene expression in AT-1 cardiomyocytes, and this activity was mediated by the angiotensin II type-1 receptor.  相似文献   

2.
Inflammatory cytokines have been implicated in the reversible depression of cardiac contractile function accompanying local or systemic immune stimulation. Incubation of cardiac myocytes with soluble components in the supernatant from cultured rat lung macrophages activated with endotoxin decreases their contractile response to beta-adrenergic stimulation through the induction of iNOS and the subsequent production of nitric oxide by these cells. In the present study, we characterize the mechanisms underlying NO's attenuation of adrenergic responsiveness in cardiac myocytes. iNOS was induced in cultured ventricular myocytes from adult rats by incubation for 20 h with conditioned medium from lipopolysaccharide (LPS)-activated macrophages. iNOS induction did not induce any alteration in beta-adrenergic receptor density or affinity, Galphai protein abundance, or adenylyl cyclase activity in cultured myocytes. Myocyte exposure to activated macrophage-conditioned medium markedly attenuated the elevation of cAMP in response to isoproterenol (Iso, 2 nM). Induction of iNOS with the macrophage-conditioned medium also potentiated the Iso-induced increase in myocyte cGMP. This cGMP increase was totally abolished by NOS inhibitors. NOS inhibition also returned the attenuated cAMP response to 2 nM Iso to levels observed in control cells. Pre-incubation of the cells in isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, also partly reversed the attenuation of cAMP increase with 2 nM Iso in cells expressing iNOS. Brief (15 min) exposure of myocytes to the NO donor, S-nitrosoacetylcysteine (SNAC, 100 micro M) which produced a three-fold increase in intracellular cGMP, also decreased by half the contractile response of cardiac myocytes to Iso (2 nM). We conclude that NO endogenously produced by iNOS decreases the intracellular levels of cAMP in response to beta-adrenergic stimulation in isolated cardiac myocytes, in part through a cGMP-mediated mechanism. This effect may participate in the NO-dependent depression of cardiac function following cytokine exposure.  相似文献   

3.
The regulation of angiotensin II (Ang II) receptors and Ang II-induced modulation of intracellular Ca2+ concentration in cardiac cells from hearts of experimentally induced hypertensive deoxycorticosterone acetate (DOCA)-salt and control unilaterally nephrectomized (Uni-Nx) Sprague-Dawley rats was assessed. Ang II receptor density and intracellular Ca2+ concentration measurements were examined in adult ventricular myocytes and fibroblasts by radioligand binding assay and digital imaging using fura 2 methodology, respectively. Four-week DOCA-salt treatment induced hypertension associated with cardiac hypertrophy. Ang II binding studies demonstrated that adult ventricular myocytes and fibroblasts possess mainly the AT1 subtype receptor. Moreover, DOCA-salt hypertension was associated with a 1.8-fold increase in Ang II-specific binding compared with myocytes from Uni-Nx control rats. Intracellular Ca2+ responses induced by increasing Ang II concentrations (10[-12] to 10[-4] mol/L) were significantly enhanced in cardiomyocytes from DOCA-salt rats. The effects of Ang II on intracellular Ca2+ spike frequency were unaltered in cardiomyocytes from DOCA-salt-hypertensive rats. The density of AT1 subtype receptors was not modified in ventricular fibroblasts after DOCA-salt treatment. Ang II increased intracellular Ca2+ concentration similarly in ventricular fibroblasts from normal and hypertensive rats. In conclusion, DOCA-salt hypertension is characterized by an increased AT1 receptor density and intracellular calcium responses in ventricular myocytes, whereas in ventricular fibroblasts the AT1 receptor status is unaltered. These findings report for the first time the cardiac cell-specific implication of Ang II and the intracellular calcium signaling pathway stimulated by the AT1 receptor in cardiac hypertrophy in DOCA-salt-hypertensive rats.  相似文献   

4.
BACKGROUND: Plasma levels of adrenomedullin are increased in patients with congestive heart failure, but there has been no report concerning the effects of adrenomedullin on the heart. We investigated the effects of adrenomedullin on NO synthase activity in cardiac myocytes. METHODS AND RESULTS: We measured the production of nitrite, a stable metabolite of NO, in cultured neonatal rat cardiac myocytes with the Griess reagent. Inducible NO synthase mRNA and protein expression were assayed by Northern and Western blotting, respectively. Incubation of the cultures with interleukin-1 beta (10 ng/mL) for 24 hours caused a significant increase in nitrite accumulation. Adrenomedullin significantly augmented nitrite production by interleukin-1 beta-stimulated but not by unstimulated cardiac myocytes in a dose-dependent manner (10(-10) to 10(-6) mol/L). The adrenomedullin-induced nitrite production by interleukin-1 beta-stimulated cells was accompanied by increased inducible NO synthase mRNA and protein expression. In the presence of dibutyryl cAMP, the interleukin-1 beta-induced nitrite accumulation was increased further, but the stimulatory effect of adrenomedullin on nitrite production was abolished. Adrenomedullin dose-dependently increased intracellular cAMP levels in cardiac myocytes. Addition of the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP[8-37] to the culture dose-dependently inhibited both cAMP and NO generation stimulated by adrenomedullin. CONCLUSIONS: These results indicate that adrenomedullin acts on cardiac myocytes and augments NO synthesis in these cells under cytokine-stimulated conditions, at least partially through a cAMP-dependent pathway.  相似文献   

5.
6.
Circulating concentrations of CRH rise late in human pregnancy, reaching a peak at labor. The presence of functional CRH receptors, CRH-R1 and CRH-R2, in the human myometrium suggests that CRH may modulate uterine activity. We hypothesized that the number of CRH receptors would be higher in myometrium than fetal membranes (FM) and would change during labor. Myometrial samples were collected from the lower segment (LS) in nonpregnant, preterm (32 +/- 2 weeks), and term (39 +/- 1.6 weeks) pregnant patients before and at labor. Fundus and LS samples were also collected from nonpregnant, pregnant, laboring, and postpartum women. FM were collected at term and at labor. We identified CRH receptors in myometrium and FM by semiquantitative RT-PCR and immunohistochemistry. CRH-R1 messenger ribonucleic acid (mRNA) in the LS was decreased in pregnancy and increased significantly in both preterm and term labor (P < 0.05), but remained unchanged in the fundus. CRH-R2 mRNA was present in 28% of LS myometrium with no change at labor. CRH-R1 and CRH-R2 protein was localized to myometrial smooth muscle in nonpregnant and laboring patients, with lower levels at term. CRH-R1 mRNA was present in chorion and decidua, but CRH-R2 was undetectable in these tissues. We conclude that CRH-R1 is expressed preferentially in myometrium and FM. Changes in CRH receptors during labor are consistent with CRH mediating effects on myometrial activity.  相似文献   

7.
The influence of CRF on testosterone production in primary mouse Leydig cell cultures was studied, and the type of CRF receptor (CRF-R) involved in this activity was determined. CRF directly stimulated testosterone production in mouse Leydig cells, but did not influence the maximum human (h)CG-induced testosterone production. The effect was time- and dose-dependent, saturable with an EC50 of 2.84 nM for hCRF, antagonized by the CRF antagonist alpha-helical CRF9-41, and accompanied by intracellular cAMP elevation. The rank order of potency of the natural CRF agonists, hCRF, ovine CRF, sauvagine, and urotensin, corresponded to that of their activities on CRF-R1 in rat pituitary cells and also to that reported for this receptor, but not for CRF-R2, when transfected into various cell lines. Furthermore, the difference in response of mouse Leydig cells to [11-D-Thr,12-D-Phe]- and [13-D-His,14-D-Leu]-ovine CRF corresponded to that measured when COS cells expressing CRF-R1 were activated, but was considerably smaller than that observed for activation of COS cells expressing CRF-R2alpha or -R2beta. The messenger RNA encoding the mouse CRF-R1 was detected by RT-PCR in mouse Leydig cell preparations. In contrast to mouse Leydig cells, CRF agonists had no influence on the basal testosterone and cAMP production by rat Leydig cells, nor did the agonists or antagonist change the hCG-stimulated testosterone and cAMP production by these cells. It is concluded that mouse Leydig cells express CRF-R1, mediating elevation of testosterone production by CRF agonists through cAMP. Because potencies of CRF agonists in activating mouse Leydig cells were more than 10-fold lower compared with their potencies in stimulating rat pituitary cells, it is suggested that the coupling of the CRF-R1 to intracellular signaling in Leydig cells is different from that in corticotropic pituitary cells, at least in quantitative terms.  相似文献   

8.
We have previously shown that extracellular ATP, like norepinephrine (NE) and many other hypertrophy-inducing agents, increases expression of the immediate-early genes c-fos and junB in cultured neonatal cardiac myocytes but that the intracellular signaling pathways activated by ATP and responsible for these changes differ from those stimulated by NE. Furthermore, whereas NE increases incorporation of [14C]phenylalanine (14C-Phe) and cell size in neonatal cardiomyocytes, ATP does not. Since ATP is coreleased with NE from sympathetic nerve endings in the heart, we investigated whether ATP could modulate cardiac hypertrophy induced by adrenergic agonists, such as NE. We report in the present study that extracellular ATP inhibited the increase in incorporation of 14C-Phe into cellular protein and the increase in cell size in neonatal rat cardiac myocytes that was induced by NE, phenylephrine (PE), basic fibroblast growth factor, or endothelin-1. This inhibition was dose dependent, occurred predominantly through P2 purinergic receptors, and was observed even when cells were treated with ATP for as little as 1 hour before the addition of the hypertrophy-inducing agent. ATP also selectively affected changes in gene expression associated with hypertrophy. It prevented PE-stimulated increases in atrial natriuretic factor and myosin light chain-2 mRNA levels, while appearing to augment basal and PE-stimulated skeletal alpha-actin mRNA levels. ATP alone increased sarcoplasmic reticulum Ca2+-ATPase mRNA levels but had no effect when added with PE. ATP did not significantly affect the level of the constitutively expressed mRNA for GAPDH. Neither the PE-stimulated increase in immediate-early gene expression nor the initial induction of mitogen-activated protein kinase activity by PE was inhibited by ATP. These results demonstrate that extracellular ATP can inhibit hypertrophic growth of neonatal cardiac myocytes and differentially alter the changes in gene expression that accompany hypertrophy.  相似文献   

9.
Cardiac cellular hypertrophy plays an important role in cardiovascular diseases. Up until now, little has been known about the regulation of cellular growth on the level of intracellular signalling. Here, the implication of the p70(S6)-kinase (p70(S6K)) in the hypertrophic response after beta-adrenergic stimulation of cardiac myocytes from adult rats was investigated. Isoproterenol stimulation can activate p70(S6K) in adult cardiomyocytes analysed by direct kinase assays and retarded gel mobility. This signalling of beta-adrenoceptor stimulation is found only under conditions where the cardiomyocytes exhibit also a hypertrophic response to beta-adrenoceptor stimulation as measured by increase in protein content, RNA content and incorporation of radiolabelled amino acids. Rapamycin, a specific inhibitor of this kinase, reduces the trophic responses to control levels, suggesting an involvement of the p70(S6)-kinase in the development of cellular hypertrophy. An engagement of the MAP-kinase (ERK-1/2) pathway in the beta-adrenergic induced growth of cardiac myocytes from adult rats was excluded.  相似文献   

10.
Cardiac myocytes rapidly increase the cell number during the fetal and early neonatal period, but they lose their proliferative ability soon after birth. To understand the mechanism of how cardiac myocytes exit from the cell cycle, we examined the role of a newly identified serine/threonine kinase, polo-like kinase (Plk), in the process of proliferation of cardiac myocytes. Northern blot analysis revealed that Plk gene was abundantly expressed in cardiac myocytes and non-myocytes of fetal and neonatal rats but not in cardiocytes of adult rats. Western blot analysis showed that Plk protein was also detected only in fetal and neonatal hearts. During the early stage of cardiac differentiation. Plk expression was well correlated with the proliferative ability of cardiocytes. Plk mRNA was most abundant in undifferentiated embryonic stem (ES) cells and the mRNA levels decreased along with cardiac differentiation in the developing ES cell system. Once serum was deprived from the culture media, expression levels of Plk were markedly decreased and DNA was not synthesized in both cardiac myocytes and non-myocytes of neonatal rats. Re-addition of serum stimulated Plk gene expression and DNA synthesis in non-myocytes but not in cardiomyocytes. All these results taken together with the critical role of Plk in DNA synthesis in many cell types suggest that downregulation of Plk is important for the permanent withdrawal of cardiomyocytes from the cell cycle.  相似文献   

11.
Placentally derived CRH plays a major role in the mechanisms controlling human pregnancy and parturition. It has been suggested that there is a CRH placental clock that is active from the early stages of pregnancy and determines the length of gestation and the timing of parturition. CRH can influence human reproductive tissue function via specific CRH receptors. Two distinct CRH receptors have been cloned (R1 and R2) that share 70% homology at the amino acid level and exist as two alternatively spliced forms (alpha and beta). In this study we investigated the presence of CRH receptor subtypes in human fetal membranes derived from spontaneous rupture and placental biopsies at term. Using RT-PCR, we identified the full length of the CRH-R1alpha subtype in placental and fetal membranes. In both tissues we also identified a spliced variant of the CRH receptor (CRH-Rc). We were unable to detect any CRH-R2 messenger ribonucleic acid in any of the biopsies. Fluorescent in situ hybridization and immunofluorescence in both tissues demonstrated that syncytiotrophoblast cells and amniotic epithelium are the major cell types expressing CRH-1alpha and CRH-Rc receptor messenger ribonucleic acid. Further studies are necessary to give a better insight into the role of CRH and its receptors in these tissues.  相似文献   

12.
In response to insulin-like growth factor-I (IGF-I), neonatal rat cardiac myocytes exhibit a hypertrophic response. The elucidation of the IGF-I signal transduction system in these cells remains unknown. We show here that cardiac myocytes present a single class of high affinity receptors (12,446 +/- 3,669 binding sites/cell) with a dissociation constant of 0.36 +/- 0.10 nM. Two different beta-subunits of IGF-I receptor were detected, and their autophosphorylation was followed by increases in the phosphotyrosine content of extracellular signal-regulated kinases (ERKs), insulin receptor substrate 1, phospholipase C-gamma1, and phosphatidylinositol 3-kinase. IGF-I transiently activates c-Raf in cultured neonatal cardiac myocytes, whereas A-raf is activated much less than c-Raf. Two peaks of ERK activity (ERK1 and ERK2) were resolved in cardiac myocytes treated with IGF-I by fast protein liquid chromatography, both being stimulated by IGF-I (with EC50 values for the stimulation of ERK1 and ERK2 by IGF-I of 0.10 and 0. 12 nM, respectively). Maximal activation of ERK2 (12-fold) and ERK1 (8.3-fold) activities was attained after a 5-min exposure to IGF-I. Maximal activation of p90 S6 kinase by IGF-I was achieved after 10 min, and then the activity decreased slowly. Interestingly, IGF-I stimulates incorporation of [3H]phenylalanine (1.6-fold) without any effect on [3H]thymidine incorporation. These data suggest that IGF-I activates multiple signal transduction pathways in cardiac myocytes some of which may be relevant to the hypertrophic response of the heart.  相似文献   

13.
The effects of a new forskolin derivative, (13R)-spiroforskolin, on the ventricular cAMP-activated chloride current (I(Cl(cAMP))) and the atrial L-type calcium current (I(Ca,L)) were measured by means of whole-cell recording from isolated guinea-pig cardiac myocytes at 30 degrees C and 20-22 degrees C, respectively. In contrast to forskolin, the derivative contains a tetrahydrofuran rather than a tetrahydropyran moiety. (13R)-spiroforskolin activated I(Cl(CAMP)) in 58% of the ventricular myocytes studied. The concentration required for the half maximal effect (EC50 value) amounted to 9.6x10(-11) M and was lower than the EC50 value for forskolin (2.4x10(-8) M). (13R)-spiroforskolin evoked a smaller maximal I(Cl(cAMP)) amplitude than forskolin. The rundown of the (13R)-spiroforskolin-activated I(Cl(cAMP)) was faster than that of the forskolin-induced current. Neither forskolin nor (13R)-spiroforskolin in maximally effective concentrations increased I(Cl(cAMP)) in cells containing high concentrations of cAMP. Furthermore, as an activator of atrial I(Ca,L) (13R)-spiroforskolin displayed a smaller activation and a lower EC50 value (5.8x10(-10) M) than forskolin (EC50 value: 3.7x10(-7) M). The effect of (13R)-spiroforskolin was observed in only 30% of the atrial cells studied. None of the drugs exerted a stimulatory effect in atrial cells containing a high [cAMP]. The washout of the drug effect was significantly faster in (13R)-spiroforskolin- than in forskolin-treated atrial myocytes. We conclude that (13R)-spiroforskolin as a forskolin derivative displays unique characteristics. It is a more potent but less efficacious activator of cardiac ionic conductances than the parent compound. The results suggest that (13R)-spiroforskolin, like forskolin, most probably exerts its effects via stimulation of the adenylyl cyclase.  相似文献   

14.
BACKGROUND: Overexpression of the inducible hsp70 protects against ischemic cardiac damage. However, it is unclear whether the small heat shock proteins hsp27 and alphaB-crystallin protect against ischemic injury. METHODS AND RESULTS: Our aim was to examine whether the overexpression of hsp27 and alphaB-crystallin in neonatal and adult rat cardiomyocytes would protect against ischemic injury. Recombinant adenovirus expressing hsp27 or alphaB-crystallin under the control of the cytomegalovirus promoter was used to infect cardiac myocytes at high efficiency as assessed by immunostaining. Overexpression was confirmed by Western blot analysis. Cardiomyocytes were subjected to simulated ischemic stress, and survival was estimated through assessment of lactate dehydrogenase and creatine phosphokinase release. The hsp27 overexpression decreased lactate dehydrogenase release by 45+/-7.5% in adult cardiomyocytes but had no effect in the neonatal cells. In contrast, alphaB-crystallin overexpression was associated with a decrease in cytosolic enzyme release in both adult (29+/-6.6%) and neonatal (32+/-5.4%) cardiomyocytes. Decreased endogenous hsp25 with an antisense adenovirus produced a 29+/-9.9% increase in damage with simulated ischemia. Overexpression of the inducible hsp70 in adult cardiomyocytes was associated with a 34+/-4.6% decrease in lactate dehydrogenase release and is in line with our previous results in neonatal cardiomyocytes. CONCLUSIONS: The increased expression of hsp27 and alphaB-crystallin through an adenovirus vector system protects against ischemic injury in adult cardiomyocytes. Likewise, the overexpression of alphaB-crystallin protects against ischemic damage in neonatal cardiomyocytes. Decreasing the high levels of endogenous hsp25 present in neonatal cardiomyocytes renders them more susceptible to damage caused by simulated ischemia.  相似文献   

15.
16.
17.
18.
Procorticotrophin-releasing hormone (proCRH) is expressed mainly in the hypothalamus and in the placenta, where it undergoes tissue-specific endoproteolysis. Our results show that within stably transfected AtT20/D16V cells proCRH is cleaved to generate two fragments of approximately 8 and 3 kDa which could account for proCRH(125-194) and proCRH(125-151), respectively, and a 4.5 kDa product which could account for mature IR-CRH(1-41). The immunofluorescence staining patterns for IR-CRH and IR-ACTH and their response of secretagogues indicate targeting of proCRH and POMC to the secretory pathway in transfected AtT20 cells. In this work, we have used a unique set of specific RIAs and IRMAs to the full length POMC and proCRH molecules and several products of endoproteolytic processing to assess if they could be released differentially in response to stimulation. Although the release of both IR-ACTH and IR-CRH peptides from transfected AtT20 cells is stimulated in response to exposure to high potassium stimulation (51 mM KCl/SmM CaCl2), the sorting index (SI) suggests that mature ACTH is sorted to the regulated secretory pathway 2.1-fold more efficiently than mature CRH(1-41). Mature ACTH is also sorted to the regulated secretory pathway 9-fold more efficiently than IR-proCRH(125-151). Also, mature CRH(1-41) is sorted to the regulated secretory pathway 3-fold more efficiently than IR-proCRH(125-151). These results therefore indicate that the intracellular mechanisms for the storage and release of POMC, proCRH and their endoproteolytic products differ and would sustain the hypothesis that within mammalian peptidergic cells, different biologically active peptides originating from the same or different precursor molecules, could be differentially released in response to specific stimuli. This would give these cells the capacity to finely regulate neurotransmitter release in response to environmental and physiological demands.  相似文献   

19.
Taurine is a very important organic osmolyte in most adult cells. Because of this property it has been proposed that large changes in the intracellular content of taurine can osmotically stress the cell, causing changes in its size and shape. This hypothesis was examined by measuring cell dimensions of taurine deficient cardiomyocytes using confocal microscopy. Incubation of isolated neonatal rat myocytes with medium containing 5 mM beta-alanine led to a 55% decrease in intracellular taurine content. Associated with the loss of taurine was a reduction in cell size. Two factors contributed to the change in cell size. First, there was a shift in cell shape, favoring the smaller of the two cellular configurations commonly found in the myocyte cell culture. Second, the size of the polyhedral configuration was reduced after beta-alanine treatment. These same two events also contributed to size reduction in cardiomyocytes incubated with medium containing 30 mM mannitol. Nonetheless, some qualitative differences exist between cells osmotically stressed by increasing the osmolality of the incubation medium and decreasing intracellular osmolality. The results support a role for taurine in the regulation of osmotic balance in the neonatal cardiomyocyte.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号