首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Bombesin and dopamine prevent gastric injury by an unknown mechanism. Sensory neurons and endogenous prostaglandins play an important role in gastric mucosal defense. This study was designed to assess the role of these two local defense mechanisms in bombesin and dopamine-induced gastroprotection, as well as mild irritant-induced adaptive cytoprotection. METHODS: Conscious, fasted rats were given either capsaicin (125 mg/kg subcutaneously) to ablate sensory neurons or indomethacin (5 mg/kg intraperitoneally) to inhibit prostaglandin synthesis, 2 weeks and 30 minutes, respectively, before administration of bombesin (100 micrograms/kg subcutaneously), the dopamine precursor L-DOPA (25 mg/kg intraperitoneally), or the mild irritant 25% ethanol (1 mL orogastric). A 1-mL orogastric bolus of acidified ethanol (150 mmol/L HCl/50% ethanol) was given 30 minutes after pretreatment with these peptides and 15 minutes after administration of the mild irritant. Rats were killed 5 minutes later and the total area of macroscopic gastric injury quantified. RESULTS: Ablation of sensory neurons with capsaicin negated the protective actions of bombesin but failed to reverse gastroprotection by L-DOPA or 25% ethanol. Cyclooxygenase inhibition with indomethacin partially reversed bombesin and mild irritant-induced gastroprotection but did not diminish the protective actions of L-DOPA. CONCLUSIONS: Bombesin requires intact sensory neurons to exert its protective actions through a mechanism mediated, at least in part, by endogenous prostaglandins. Adaptive cytoprotection by the mild irritant 25% ethanol requires the presence of endogenous prostaglandins but not sensory neurons. L-DOPA-induced gastroprotection is independent of both local defense mechanisms.  相似文献   

2.
Prepulse inhibition (PPI) is a form of plasticity of the startle response in which presentation of a weak stimulus immediately before an intense startling stimulus reduces the resultant startle response. Deficits in PPI, an operational measure of sensorimotor gating, are observed in schizophrenia patients and can be modeled in rats by the psychotogen phencyclidine (PCP). PCP-induced deficits in PPI in rats are resistant to dopamine and serotonin antagonists but can be antagonized by antipsychotics such as clozapine, olanzapine and Seroquel. These latter antipsychotics have antagonistic actions at several receptors, including alpha-1 and alpha-2 adrenergic, M1 muscarinic and gamma-aminobutyric acid (GABA)-A receptors. Although the direct actions of PCP are thought to be mediated by noncompetitive antagonism of N-methyl-D-aspartate sites, PCP thereby indirectly activates multiple neurotransmitter systems, including those affected by the aforementioned antipsychotics. The present studies examined the possibility that an antagonist action at a particular receptor subtype might be responsible for the interaction between PCP and the clozapine-like antipsychotics by testing whether a selective antagonist at alpha-1, alpha-2, M1 or GABA-A receptors would prevent the PCP-induced deficit in PPI in rats. Animals were pretreated with either the alpha-1 antagonist prazosin (0, 0.5, 1.0 or 2.5 mg/kg), the alpha-2 antagonist RX821002 (0, 0.2 or 0.4 mg/kg), the M1 muscarinic antagonist pirenzepine (0, 10 or 30 mg/kg) or the GABA-A antagonist pitrazepin (0, 1.0 or 3.0 mg/kg) and then treated with either saline or PCP (1.5 mg/kg). Because prazosin was effective in blocking the effects of PCP, an additional experiment tested the possibility that prazosin (0, 1.0 or 2.5 mg/kg) would block the PPI deficits produced by the dopamine agonist apomorphine (0 or 0.5 mg/kg). After drug administration, animals were tested in startle chambers. PCP was found repeatedly to decrease PPI. Prazosin (1.0 and 2.5 mg/kg) blocked this deficit in two separate experiments but did not increase base-line PPI levels. The effects on PPI were dissociable from changes in startle reactivity. Furthermore, prazosin did not antagonize apomorphine-induced disruptions of PPI, which suggests that the antagonism of the PCP effect was not simply due to a generalized improvement of deficient PPI. The antagonists for alpha-2, for M1 and for GABA-A receptors had no effect on base-line PPI or on PCP-induced disruptions in PPI. These findings indicate that the PPI-disruptive effect of PCP may be mediated in part by alpha-1 adrenergic receptors and that antagonism of alpha-1 receptors may play a major role in mediating the blockade of PCP-induced deficits in PPI by certain antipsychotics.  相似文献   

3.
The effect of camostate, a potent releaser of endogenous cholecystokinin (CCK), and of caerulein, an amphibian peptide mimicking the biological actions of CCK, as well as of selective CCK receptor antagonists on gastric emptying of liquids was studied in the rat. Oral administration of camostate (200 mg/kg with the liquid test meal preceded by the same dose 10 min before the meal) significantly delayed gastric emptying of saline, an effect which was completely blocked by previous administration of the CCKA receptor antagonist, devazepide, at a dose (1 mg/kg i.v.) unable to modify the emptying rate when administered alone. Caerulein (0.03-30 nmol/kg i.v.) also delayed the emptying rate in a dose-dependent manner, with an ID50 of 3.94 nmol/kg. The effect of the peptide was also inhibited by devazepide. The CCKB receptor antagonist, L365,260 (3R-(+)-N-(2,3-dihydro-1-methyl-2-oxo-5-phenyl-1H-1, 4-benzodiazepine-3-yl)-N'-(3-methylphenyl)-urea; 3 mg/kg i.v.), was completely unable to modify the CCK (both endogenous and exogenous)-induced delay in gastric emptying. Repeated (7 days) camostate administration did not modify the gastric motor response to endogenous CCK, thus, suggesting that adaptation did not take place. These results demonstrate that endogenous and exogenous CCK delays gastric emptying of liquids through stimulation of CCKA receptors and suggest that adaptation of the gastric motor response to CCK does not occur.  相似文献   

4.
BACKGROUND: Intragastric hypertonic (2 mol/L) saline produces injury in the gastric mucosa and a significant increase in gastric blood flow (hyperemia) in anesthetized rats. We studied the mechanism of this hyperemia. METHODS: Rats were treated with intravenous boluses of NG-nitro-L-arginine methyl ester (3 mg/kg) to block synthesis of endogenous nitric oxide, pyrilamine (1 mg/kg) to inhibit H1 receptors, or indomethacin (5 mg/kg) to block synthesis of endogenous prostaglandins during blood flow studies or with subcutaneous capsaicin (125 mg/kg) 10-14 days before blood flow studies to ablate capsaicin-sensitive afferent nerves. Gastric mucosal blood flow was measured by hydrogen gas clearance before and during intragastric administration of 2 mol/L saline. RESULTS: The gastric hyperemia induced by intragastric 2 mol/L saline was completely blocked only by indomethacin. The associated gastric mucosal damage was increased significantly. CONCLUSIONS: In the rat stomach, the gastric hyperemia induced by intragastric 2 mol/L saline is mediated by endogenous prostaglandins and plays a protective role. Endogenous nitric oxide, H1 receptors, and capsaicin-sensitive afferent nerves are not involved in this protective hyperemia.  相似文献   

5.
The involvement of 5-hydroxytryptamine (5-HT) in gastric function and mucosal damage has been defined. 5-HT also potentiates lesion formation in animals. The current study investigated further whether these actions are mediated through 5-HT3 receptors in rats. Ondansetron, a 5-HT3 receptor antagonist, was given subcutaneously, 2 or 4 mg/kg, 30 min before the gastric parameters were measured. The higher dose of ondansetron, 4 mg/kg, significantly increased gastric mucosal blood flow (GMBF) and also basal acid and Na+ secretion. However, it did not affect pepsin output. 5-HT time dependently reduced GMBF and pepsin secretion, but not that of acid and Na+. These actions were not altered by ondansetron pretreatment. The drug, however, dose dependently reduced ethanol-induced gastric mucosal lesions in the 5-HT-treated animals. These findings indicate that 5-HT3 receptors regulate not only basal GMBF, but also acid and Na+ secretion in stomachs. However, the depressive action of 5-HT on GMBF and pepsin secretion is most likely not mediated through 5-HT3 receptors. Ondansetron also modulates the toxicities of ethanol in the stomach and this action is likely to be mediated through the preservation of GMBF.  相似文献   

6.
The stimulating effect of antiparkinsonian drugs, talipexole and bromocriptine, on the striatal postsynaptic dopamine receptors were studied by measuring contralateral rotational behavior in rats. The nigro-striatal dopamine system of rats was degenerated by unilateral injection of 6-hydroxydopamine (6-OHDA, 8 micrograms/rat) into substantia nigra. By subcutaneous administration, talipexole at 0.16 mg/kg and bromocriptine at 10.24 mg/kg induced significantly increased rotational behavior to the contralateral direction to the lesioned side. The onset of the effect was 30 min for talipexole and 90 min for bromocriptine. By intragastric administration, talipexole at 0.4 mg/kg and bromocriptine at 20.48 mg/kg significantly increased the rotational behavior, and the onset of the effect was 60 min for talipexole and 180 min for bromocriptine. Rotational behavior induced by talipexole was suppressed by a D2 antagonist, sulpiride (40 mg/kg, s.c.), but not by a D1 antagonist, SCH23390 (1 mg/kg, s.c.). In contrast, rotational behavior induced by bromocriptine was suppressed by both sulpiride and SCH23390. These results indicated that when the nigrostriatal dopaminergic functions are disrupted, talipexole stimulates the striatal postsynaptic dopamine receptors at much lower doses than bromocriptine. Also it was indicated that the stimulating effect of talipexole is solely mediated by dopamine D2 receptors, whereas the effect of bromocriptine is mediated by both D1 and D2 receptors.  相似文献   

7.
In order to elucidate the involvement of cholecystokinin (CCK) in the regulation of anxiety, the author examined the effects of the selective non-peptide CCKB receptor antagonist LY288513 on freezing behavior induced by conditioned fear stress, an animal model of anxiety. Rats were individually subjected to 5 min of inescapable electric footshock in a shock chamber. Twenty-four hours after the footshock, the rats were again placed in the shock chamber and observed for 5 min without shocks: this procedure is termed conditioned fear stress. Subcutaneous administration of LY288513 30 min before footshock (0.3 mg/kg) and 30 min before conditioned fear stress (0.03-0.3 mg/kg) reduced conditioned freezing. This indicates that LY288513 blocked both the acquisition and expression of conditioned fear. The relatively selective non-peptide CCKA receptor antagonist, lorglumide, blocked the expression of conditioned fear, but only at a high dose (1.0 mg/kg). The peripheral non-peptide CCKA/B receptor antagonist, loxiglumide, failed to do so. Subcutaneous administration of LY288513 (3 mg/kg) enhanced the conditioned fear-induced in 3, 4-dihydroxy-phenylacetic acid (DOPAC) contents in the medial prefrontal cortex, which was assayed by high performance liquid chromatography with electrochemical detection. Thirty min of inescapable electric footshock decreased CCK8S contents in the amygdala, which was assayed by radioimmunoassay. These results suggest that the brain CCKB receptors are involved in the regulation of anxiety, and that the anxiolytic effects of CCKB receptor antagonists are mediated by increasing dopamine activity in the medial prefrontal cortex. Furthermore, it is possible that the CCK neurons in the amygdala are also associated with anxiety.  相似文献   

8.
The antinociceptive effects of the s.c. administration of the alpha-2 agonists clonidine (0.0032-1.0 mg/kg), dexmedetomidine (0.001-0.032 mg/kg) and xylazine (0.1-3.2 mg/kg) were examined in the warm-water tail withdrawal assay in rhesus monkeys. The three agonists were dose-dependently effective in this assay; their potency order being dexmedetomidine > clonidine > xylazine. The alpha-2 antagonist idazoxan (0.1-3.2 mg/kg) caused dose-dependent and roughly parallel rightward shifts in the dose-effect curves for the three agonists. Apparent pA2 analysis with idazoxan yielded homogeneous values for the three agonists, supporting the notion that similar receptors mediate their antinociceptive effects. The opioid antagonist quadazocine (1.0 mg/kg) did not antagonize the antinociceptive effects of clonidine and xylazine, indicating that opioid receptors do not participate in the effects of the compounds in this assay. At dose ranges found to be effective in the antinociceptive assay, clonidine, dexmedetomidine and xylazine also dose-dependently caused sedation, muscle relaxation, bradycardia and moderate respiratory depression. The sedative, muscle relaxant and respiratory depressant effects of xylazine could be antagonized by idazoxan, suggesting that these effects may be mediated through alpha-2 receptors. These data indicate that the three imidazoline alpha-2 agonists, clonidine, dexmedetomidine and xylazine are effective s.c. in the warm-water tail withdrawal assay in rhesus monkeys, but only at doses that produce other behavioral and physiological effects.  相似文献   

9.
The purpose of this investigation was to quantitatively describe the time courses of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations in the striatum after L-dopa injection using a constructed dopamine metabolism model. The time courses of dopamine, DOPAC and HVA concentration in the striatum of rats was determined before and after the rapid i.v. injection of 10, 50 and 100 mg/kg using the same animals as in the previous report. The endogenous dopamine, DOPAC and HVA concentrations in the striatum before L-dopa administration were 5.9 +/- 0.7 micrograms, 3.6 +/- 0.4 micrograms and 1.0 +/- 0.2 micrograms/g, respectively. The dopamine concentration in the striatum increased immediately after L-dopa injection, with the peak concentration (15.9 +/- 0.5 micrograms/g) occurring at 3 min; then it returned to the pre-medication level until 2 h at 100 mg/kg dosing. The time course of dopamine concentration in the striatum was analyzed on a constructed dopamine metabolism model which has a zero-order production rate for the production of dopamine (i.e. release from the dopamine neuronal terminals) and two apparent first-order clearance terms, one from L-dopa to dopamine, which was estimated in the previous report, and the other from dopamine to dopamine metabolites (DOPAC and HVA). However, the time course of dopamine concentration in the striatum could not be described by this model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The central and peripheral adrenergic systems are involved in the regulation of gastric secretion but little is known about the role of alpha- and beta-adrenoceptors in gastroprotection. In this study, acute gastric lesions were produced by an intragastric (i.g.) application of 100% ethanol and gastric blood flow (GBF) was determined by H2-gas clearance technique in rats with or without i.g. or intraperitoneal (i.p.) administration of alpha- or beta-adrenoceptor agonists or antagonists. Phenylephrine, alpha1-adrenergic agonist, and clonidine, alpha2-agonist, significantly augmented the ethanol-induced lesions while decreasing the GBF and these effects were reversed by the blockade of alpha1-adrenoceptors with prazosin and alpha2-adrenoceptors with yohimbine. In contrast, isoproterenol (ISO) (0.01-10 mg/kg i.g.), beta-adrenoceptor agonist, reduced dose-dependently ethanol-induced mucosal injury and this effect was accompanied by an elevation of the GBF similarly as after epidermal growth factor (EGF) (100 microg/kg x h s.c.) or after classic protective agent, 16,16-dimethyl-PGE2 (PGE2) (10 microg/kg i.g.). The pretreatment with beta-antagonist, propranolol, diminished the protective and hyperemic effects of ISO and EGF but failed to affect those induced by PGE2. Suppression of nitric oxide (NO) synthase activity by L-NAME or sensory denervation with capsaicin attenuated significantly the ISO- and EGF-induced gastroprotection and elevation of GBF, whereas the inhibition of PG biosynthesis by indomethacin remained without any significant effect. Adrenal medullectomy or chemical sympathectomy by 6-hydroxydopamine by itself failed to influence significantly the ethanol-induced damage but completely abolished the protective and hyperemic effects of EGF being without any influence on those induced by PGE2. ISO combined with EGF, restored the protective and hyperemic effects of this peptide in medullectomized rats. We conclude that (1) local activation of beta-adrenoceptors by ISO affords protection and elevation of GBF, both these effects being mediated by arginine-NO pathway and sensory nerves and (2) sympathetic system and adrenal medulla contribute to the protective and hyperemic activity of EGF.  相似文献   

11.
There is evidence that dopamine transmission is involved in reinforcement processes and the present study investigated the relative involvement of D3 versus D2 dopamine receptors in the effects of dopamine ligands on the reinforcing action of ethanol. Rats were trained to self-administer ethanol (10% v/v) orally in a free-choice two-lever operant task using a saccharin-fading procedure. When preference in responding for ethanol over water had developed the rats were tested with several dopamine agonists and antagonists. Pretreatment with the non-selective dopamine agonist, apomorphine (0.01-0.1 mg/kg), the preferential D2 agonist, bromocriptine (1-10 mg/kg) and the selective D3 agonists, 7-OH-DPAT (0.003-0.1 mg/kg), PD 128907 (0.1-3 mg/kg), (+)3PPP (0.3-3 mg/kg), quinelorane (0.0001-0.003 mg/kg) and quinpirole (0.003-0.03 mg/kg), resulted in dose-dependent decreases in responding for ethanol. The relative potencies of the dopamine agonists to decrease ethanol self-administration were highly correlated with their published potencies to produce in vitro functional D3 but not D2 responses. Active doses could be considered as those selectively stimulating receptors involved in the control of dopamine release, suggesting that reduction of dopamine transmission was associated with a decrease in ethanol-reinforced responding. This conclusion was further supported by the finding that pretreatment with the D2/D3 dopamine antagonists, haloperidol (0.1-0.4 mg/kg) and tiapride (10-60 mg/kg), decreased responding for ethanol at doses which have been shown previously to block dopamine transmission.  相似文献   

12.
The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.  相似文献   

13.
We examined the modulatory effect of serotonergic activities on haloperidol-induced up-regulation of dopamine D2 receptors in rat striatum. Chronic treatment with haloperidol (0.1, 0.5 mg/kg, i.p., 3 weeks) increased the number of dopamine D2 receptors, while no increase was observed with atypical antipsychotic drugs clozapine (10 mg/kg) and ORG 5222 (0.25 mg/kg). Chronic treatment with MK 212, a serotonin (5-HT)2A/2C receptor agonist (2.5 mg/kg), or with citalopram, a 5-HT reuptake inhibitor (10 mg/kg), potentiated the haloperidol (0.1 mg/kg)-induced up-regulation of dopamine D2 receptor, while that with (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist (0.1 mg/kg), had no influence on the dopamine D2 receptor up-regulation. Co-administration of ritanserin (1 mg/kg), a 5-HT2A/2C receptor antagonist, with a low dose of haloperidol (0.1 mg/kg), but not with a high dose of the agent (0.5 mg/kg), attenuated the dopamine D2 receptor up-regulation. Drug occupation of 5-HT2A and dopamine D2 receptors in vivo examined with use of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was 69.8% and 45.1%, respectively, after the acute administration of haloperidol (0.1 mg/kg) plus ritanserin (1 mg/kg). This profile that 5-HT2A receptors were highly occupied compared with dopamine D2 receptors was similar to that of clozapine or ORG 5222. These results suggest that potent 5-HT2A receptor antagonism versus weak dopamine D2 receptor blockade may be involved in the absence of up-regulation of dopamine D2 receptors after chronic treatment with clozapine or ORG 5222.  相似文献   

14.
To test the possible role of cholecystokinin (CCK) in the decrease of social exploration induced by intraperitoneal (IP) injection of lipopolysaccharide (LPS, 100 microg/kg), mice were pretreated with IP or intracerebroventricular (ICV) injection of the CCKA receptor antagonist L-364,718 (3 mg/kg and 10 microg/kg, respectively) and the CCKB receptor antagonist L-365,260 (1 mg/kg and 10 microg/kg, respectively). L-364,718 and L-365,260 did not alter LPS-induced decrease in social investigation, whatever the route of administration, suggesting that endogenous cholecystokinin does not mediate the effect of proinflammatory cytokines on social exploration in mice.  相似文献   

15.
We measured urinary dopamine in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) before (days 0-6) and during high-salt diet, in the absence (days 6-10) and presence (days 10-14) of added L-dopa (2 mg/kg/day by gavage). Urinary excretion of sodium (UNaV) increased 20-fold during intake of chow containing 8% NaCl in both strains. Systolic blood pressure (SBP) of SHR increased slightly (9 +/- 4 mmHg; p < 0.05) on the high-salt diet, whereas SBP did not change in WKY. Urinary dopamine excretion was not different between strains in the basal state, and was as great or greater in SHR than WKY during high-salt intake with and without added L-dopa. SBP was unaffected by L-dopa administration and UNaV did not increase or differ between strains despite higher urinary dopamine excretion in SHR. We conclude that renal dopamine formation in vivo is not diminished in SHR, compared with WKY, on normal or high-salt diets, and that elevation of renal dopamine formation secondary to L-dopa administration is not associated with reductions in SBP or altered UNaV in these rats.  相似文献   

16.
Old constant estrous and young cycling control rats were injected with L-dopa, 200 mg/kg, for a period of 14 days. L-Dopa reinstated vaginal cycling in the old rats and it did not affect the vaginal cycling in young rats. Likewise, 200 mg/kg of L-tyrosine reinstated vaginal cycling. The effect of L-dopa on old rats was blocked by pimozide, by high doses of MK-486 and Ro 4-4602, and by fusaric acid. High doses of phenoxybenzamine or L-propranolol did not alter the L-dopa effect on old rats. A low dose of MK-486 or Ro 4-4602 increased the efficacy of L-dopa in reinstating vaginal cycling. These results suggest that L-dopa reinstates vaginal cycling in old rats by stimulating dopamine receptors. The possibility that a simultaneous stimulation of norepinephrine alpha and beta receptors and/or a decrease of central nervous system serotonin is necessary for this effect is discussed.  相似文献   

17.
Central and peripheral administration of DDAVP increase locomotor activity in rats in doses that alter brain dopamine neurochemistry. In order to delineate the role of catecholamines in this behavioural effect of DDAVP, the effects of different catecholamine manipulating agents on DDAVP-induced locomotor stimulation were studied in rats. The catecholamine depleting agent reserpine (5 mg/kg), administered alone or together with the catecholamine synthesis inhibitor alpha-methyltyrosine (250 mg/kg), completely prevented the locomotor stimulatory effect of DDAVP. The dopamine D1 receptor antagonist Sch-23390 (0.01 and 0.03 mg/kg) significantly antagonized the DDAVP-induced locomotor stimulation when administered in the higher dose, that also produced a significant reduction of locomotor activity per se, whereas the dopamine D2 receptor antagonist raclopride (0.08 and 0.16 mg/kg) had no significant effect. The two dopamine blockers administered together produced a significant, dose-dependent reduction of DDAVP-induced locomotor stimulation, while controls were not significantly affected. Also the alpha-adrenoceptor antagonist phenoxybenzamine decreased the DDAVP-induced locomotor stimulation in a dose (20 mg/kg) that did not influence locomotor activity in controls, and, finally, administration of Sch-23390, raclopride and phenoxybenzamine antagonised the DDAVP-induced effect in a dose combination that failed to influence locomotor activity per se. In vivo microdialysis experiments in awake, freely moving rats indicated that DDAVP increases dopamine overflow in the nucleus accumbens, a brain area of importance for initiation of locomotor activity, by approximately 25%, as compared to baseline levels. Taken together, these results indicate that the central stimulatory action of DDAVP involves granula-mediated dopamine release and subsequent activation of dopamine D1 and D2 receptors, and that alpha-adrenoceptors possibly also are involved.  相似文献   

18.
Intracisternal injection of a stable thyrotropin-releasing hormone (TRH) analog increases gastric prostaglandins release and mucosal resistance to injury through central vagal pathways. The effects of two nonsteroidal anti-inflammatory drugs, indomethacin (INDO) and nabumetone on intracisternal injection of various doses of TRH-induced gastric acid secretion and changes in mucosal resistance were investigated in urethane-anesthetized rats. Doses of INDO (5 mg/kg) and nabumetone (13.75 mg/kg) producing similar acute anti-inflammatory response in the carrageenin-induced paw edema were injected i.p. in all studies. INDO potentiated the acid secretion induced by intracisternal injection of TRH at 25, 50 and 200 ng by 5.1-, 1.9- and 1.4-fold, respectively, whereas nabumetone did not modify the secretory response to TRH. Moderate erosions were observed in 100% of rats treated with the combination of INDO and TRH (200 ng) whereas no erosions were observed when TRH or INDO were given alone or TRH in combination with nabumetone. TRH at 7 ng reduced mucosal damage induced by intragastric administration of ethanol (60%, 1 ml/kg) by 63%. The mucosal protective action of TRH was abolished by INDO but not altered by nabumetone pretreatment. These data indicate that at comparable anti-inflammatory doses, nabumetone, unlike INDO, neither blocks the protection against ethanol injury induced by low doses of TRH injected intracisternally nor potentiates the gastric acid secretion or lesions induced by higher dose of TRH. We speculate that these differences reflect reduced inhibition of gastric prostaglandins by nabumetone.  相似文献   

19.
Endothelin-1 (0.25 nmol/kg, injected into the left cardiac ventricle) induces a protracted increase of mean arterial pressure that is significantly reduced by the selective ET(A) receptor antagonist BQ-123 (1 and 10 mg/kg) in the anesthetized rabbit. The sole administration of the selective ET(B) antagonist BQ-788 (0.25 mg/kg) induces a pressor response abolished by BQ-123 (1 mg/kg). Concomitant to the increase in mean arterial pressure, BQ-788 induces a significant increase in plasma levels of endothelin-1 and its precursor big endothelin-1. The nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME; 10 mg/kg) also increases arterial blood pressure, and the response is reduced dose-dependently by BQ-123 (1 and 10 mg/kg). In addition, the administration of BQ-788 in the presence of L-NAME induced a further increase in arterial blood pressure. The duration of the pressor response to L-NAME is also significantly reduced by an endothelin-converting enzyme inhibitor, phosphoramidon (10 mg/kg). Finally, L-NAME induces an increase in plasma levels of big endothelin-1 but not endothelin-1. Our results illustrate that blockade of either nitric oxide synthase or ET(B) receptors triggers a raise in plasma levels of endothelin-1 or its precursor. These later moieties are suggested to be significantly involved, through the activation of ET(A) receptors, in the pressor effects of L-NAME and BQ-788 in the anesthetized rabbit.  相似文献   

20.
Pretreatment of rats with aminooxyacetic acid (AOAA; 40 mg/kg) raised the concentration of rat brain GABA and inhibited the hyperactivity produced by increasing brain 5-hydroxytryptamine (5-HT) concentration by administration of tranylcypromine and L-tryptophan. The maximum effect was seen 90 min after AOAA injection with smaller effects 30 and 180 min after injection. AOAA did not affect the rate of 5-HT accumulation in the brain, but did inhibit the hyperactivity response which follows injection of the 5-HT agonist 5-methoxy-N,N-dimethyltryptamine, suggesting that post-synaptic 5-HT responses were being inhibited. AOAA also inhibited the locomotor activity which follows administration of tranylcypromine and L-dopa. Blockade of GABA receptors by injection of picrotoxin (2.5 mg/kg) enhanced the dopamine hyperactivity. Since a dopaminergic system has been shown to be involved in the 5-HT hyperactivity syndrome and appears to act post-synaptically to the 5-HT neurones initiating the syndrome it is suggested that inhibition of the 5-HT hyperactivity syndrome may be due to accumulation of GABA distal to the dopaminergic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号