首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
棒状金纳米粒子的制备及其光谱特性   总被引:1,自引:0,他引:1  
以银离子为辅助粒子,十六烷基三甲基溴化铵(CTAB)为表面活性剂,抗坏血酸为弱还原剂,利用晶种法制备棒状金纳米粒子,着重研究晶种用量与氯金酸量的比例对棒状纳米粒子形状和产率的影响。利用透射电子显微镜(TEM)和X射线衍射(XRD)仪对纳米粒子的形貌及晶体结构进行分析,利用紫外可见光谱(UV-Vis)对产物进行光谱表征。结果表明,纳米棒为面心立方结构,其UV-Vis出现位于530 nm处的短波吸收和970~980 nm的长波吸收,随着晶种与氯金酸用量比例的增加,纳米棒的长径比出现先增大后减小的趋势,并最终形成球形颗粒。最后探讨晶种用量影响金纳米棒生长的机制。  相似文献   

2.
采用硝酸诱导的晶种法制备金单晶纳米带,利用TEM、HRTEM和UV-vis技术对产物进行形貌、结构表征和吸收性能分析。发现产物的形态有纳米带、纳米片和纳米颗粒,但以纳米带为主。纳米带为面心立方结构金单晶。UV-vis显示,产物的微弱吸收峰位于550nm和强吸收峰位于975nm,分别起源于纳米带横轴直径与长度方向的表面等离子体共振。金纳米带的生长机制进是,小尺寸纳米片在硝酸诱导作用下通过表面偶极作用进行自组装。  相似文献   

3.
本文以芦荟叶提取液为还原剂和稳定剂,成功地制备了小粒径、球状的金纳米粒子。在这种方法中,简单的芦荟叶提取液和金源混合,没有使用有毒试剂,因此该方法是一种生态友好的合成纳米金的方法。混合溶液的颜色从浅黄色变到紫色,表明生成了纳米金粒子。采用紫外-可见吸收光谱(UV-vis)、激光粒径分析仪(DLS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X-射线衍射(XRD)等方法对合成的纳米金粒子进行了表征和性能测试。紫外-可见光谱的吸收峰再次表明金纳米颗粒的形成。XRD分析表明所生成的纳米我金具有高度结晶性。TEM和SEM表明纳米金颗粒呈球形,粒径分布在20 nm到60 nm之间。FT-IR证实了金纳米粒子提取物所保护,使其不发生团聚和氧化。论文研究了反应温度、氯金酸溶液和提取物的用量对纳米金粒径的影响。结果表明,这些参数在金纳米粒子的合成中起着重要的作用。  相似文献   

4.
以柠檬酸钠和聚乙烯吡咯烷酮(PVP)分别为稳定剂和分散剂,水合肼还原银氨络离子制备稳定的单分散胶态银纳米颗粒(AgNPs).利用紫外-可见吸收光谱(UV - Vis)研究了银纳米颗粒的稳定性并对制备条件进行了优化,采用X射线衍射(XRD)和透射电镜(TEM)对产物的晶体结构、形貌及尺寸进行了分析.结果表明:当银氨溶液/...  相似文献   

5.
近年来,小尺寸单分散磁性材料在磁流体、先进磁性器件、催化剂、颜料、高密度磁记录介质以及医学诊断等方面应用中显示出许多独特的性能及广泛的应用前景。因此,关于单分散纳米磁性颗粒的制备成为了基础科学技术方面学者们研究的热点课题。其中,尖晶石结构铁氧体纳米材料被广泛应用于电子器件、信息存储、核磁共振成像以及靶向释药等诸多方面,纳米Fe3O4更是在生物标的、  相似文献   

6.
通过对玻璃基底的硅烷基化,金纳米粒子被组装到玻璃基底上,SEM表明金纳米粒子在玻璃基底上形成二维的亚单层组装结构.同时又利用聚苯乙烯模板对金纳米粒子进行图案化组装,在玻璃基底上形成"面包圈"结构.  相似文献   

7.
采用种子生长法合成了GNRs,并对其进行了不同温度的热处理.通过TEM、XRD、UV-vis等手段分析了热处理对金纳米棒的形貌、尺寸及光学性能的影响规律.结果显示:随着对GNRs的热处理温度升高,其LSPR发生蓝移,并且LSPR的半峰全宽(FWHM)明显减小,产生该现象的原因通过探究平均长径比为3.31、4.38、4....  相似文献   

8.
顾江镇 《贵金属》1994,15(4):32-34
介绍钯的纳米晶制备方法,钯纳米晶的微观结构及扩散与抗拉强度等。其抗拉强度比粗晶高,断口为脆性特征,低于某临界晶粒尺寸时,不符合Hall-Petch关系。  相似文献   

9.
采用银晶种为引导剂,以高浓度硝酸银溶液为银源,乙二醇为还原剂,聚乙烯吡咯烷酮为盖帽剂,大规模制备银纳米棒。用扫描电镜,元素分析和X射线衍射对银纳米棒进行表征。结果表明,通过预加银晶种的方式替代添加金属盐类,最佳的反应条件为:搅拌速度为350 r/min,反应温度为160℃,硝酸银浓度不高于0.50 mol/L,采取体积放大6倍高浓度硝酸银制备银纳米棒时,需要提高银晶种的浓度为9.81 mmol/L,PVP/AgNO3摩尔比为1.3,该方法利用银晶种的引导作用,调控硝酸银的还原速度使之与银纳米棒的生长速度相匹配。  相似文献   

10.
本文报道了添加纳米金刚石粉(NDP)碳惩的静液压合成金刚石初步试验。结果表明,NDP作为晶种可提高石墨相变为金刚石的得量,并提高产物中金刚石粗晶粒的比例。  相似文献   

11.
关俊卿  滕海涛  陈峤  王鹏  李治宇 《贵金属》2018,39(S1):97-100
以抗坏血酸(VC)为还原剂,以聚乙烯醇为分散剂还原氯金酸制备金粉,制备得到粒径为1~3 μm的高致密球形金粉末。用SEM对所制金粉进行了表征,分析分散剂的不同用量对金粉形貌和粒径的影响,还原剂滴加速度对金粉形貌和粒径的影响。将所制金粉配制成金浆料,丝网印刷高温烧结后,表征金膜特性。结果表明该金粉可用于制备厚膜金导体浆料。  相似文献   

12.
在含有高浓度的 HAuCl4单组份表面活性剂的溶液体系中,研究了由丙酮促进的金纳米棒晶种媒介的光化学生长和溶解。结果表明,在晶种媒介的生长溶液中,当丙酮/生长溶液之比高于0.1/25(V/V)时,高产率的金纳米棒(长径比为3.5,平均直径14 nm)能够快速形成;当丙酮/生长溶液之比等于或低于这一临界值时,在化学陈化阶段已形成的金纳米棒则在紫外光照射下溶解。在溶解过程中,金纳米棒发生一系列的形态变化,包括缩短,形成纳米球和完全溶解。进一步的紫外照射最终使溶液成为无色的初始Au(I)-CTAB络合物溶液状态。  相似文献   

13.
分别采用熔铸法和D-KH法(叠轧复合-扩散合金化工艺)制备了Ag-22.4Cu-20Sn钎料合金,采用XRD、SEM、DSC及万能力学试验机等测试技术,对合金相组成、显微组织、熔化特性、钎焊接头的剪切强度和钎焊界面形貌等进行了对比研究。结果表明,D-KH法制备的钎料相组成为(Ag)、Cu3Sn、Ag5Sn相,而熔铸法制备的钎料相组成为(Ag)、Cu3Sn、Ag5Sn以及Cu41Sn11相;D-KH法制备的钎料合金液固相线均降低,熔程减小。与熔铸法相比,用D-KH法制备得到的厚度0.1 mm的钎料薄带,润湿铺展性更优、接头剪切强度更高、接头强度稳定性更好。  相似文献   

14.
化学还原法制备的铜银合金粉及其性能   总被引:6,自引:0,他引:6  
导电填料是电子产品用导电复合材料的主要组元。为防止银基填料中Ag的迁移及克服镀银铜粉的缺点,作者采用抗坏血酸还原Cu2+和Ag+,直接制备了由平均粒径15μm的片状富Ag固溶体合金粉SAg(Cu)和平均粒径2μm的球形富Cu固溶体合金粉SCu(Ag)组成的Cu-Ag合金混合粉。研究了AgNO3用量、CuSO4浓度、反应温度等对Cu-Ag合金粉抗氧化性和导电性的影响,发现上述因素明显影响Cu-Ag合金粉的性能,制备出在<700℃温度煅烧后不被氧化且导电性能不改变的Cu-Ag合金粉。  相似文献   

15.
王仕兴  董守安  顾永万  潘云昆  周华 《贵金属》2003,24(2):24-27,56
研究了阴离子表面活性剂疏水链的长度对光化学制备金纳米粒子的影响。结果发现,疏水链越长,获得的金纳米粒子的尺寸越小;特别是苯环的引入使诱导和自催化现象越加不明显。在十二烷基磺酸钠体系中获得的金纳米粒子的λmax位于540.7nm,TEM表征的平均粒径为47.1nm;十二烷基苯磺酸钠体系的λmax位于526.5nm,平均粒径为6.7nm。探讨了胶束性质对光化学制备金纳米粒子的影响。  相似文献   

16.
采用化学还原法,在水相中,以硼氢化钠为还原剂,月桂酸为分散剂,通过还原银氨络合物溶液制备了纳米银胶体,之后通过调节胶体的pH值,分离出了纳米银颗粒。TEM和XRD分析表明,该纳米银颗粒的平均粒径大约为17 nm,集中分布于5~30 nm,且无明显的团聚现象;红外光谱分析表明该纳米银颗粒表面包覆有月桂酸,紫外光谱表明制得的纳米银胶体在397 nm处有较强的吸收峰。将分离出的湿纳米银颗粒作为功能相,加入预先配制的载体相中,运用机械搅拌和超声分散等手段,制得了纳米银导电浆料。热重分析表明该浆料含有约67%(质量分数)的金属银,在220℃下烧结2 h后,其电阻率为4.2×10-5Ω.cm。经微细笔直写后,其线条的分辨率可以达到60μm。  相似文献   

17.
研究了金纳米粒子对染料罗丹明6G(R6G)和荧光素(FL)光学性质的影响。表面有柠檬酸根保护层的金纳米粒子吸附带正电荷的罗丹明6G后,其表面等离子体共振红移;但吸附带负电荷的荧光素后,其表面等离子体共振几乎不受影响,这可能与粒子之间的静电作用有关。罗丹明6G的表面增强拉曼光谱表明其平躺吸附在金纳米粒子表面,非辐射能量转移的发生和不利的吸附取向导致罗丹明6G荧光信号强度减弱,相反,荧光素由于与金纳米粒子表层柠檬酸根之间有静电排斥作用,产生了一段距离,使得荧光信号增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号