首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (. Genetics. 142:393-406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE-associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.  相似文献   

2.
Vesicular transport between secretory compartments requires specific recognition molecules called SNAREs. Here we report the identification of three putative SNAREs, p14 (Sft1p), p28 (Gos1p), and a detailed characterization of p26 (Ykt6p). All three were originally isolated as interacting partners of the cis Golgi target membrane-associated SNARE Sed5p, when Sec18p (yeast NSF) was inactivated. YKT6 is an essential gene that codes for a novel vesicle-associated SNARE functioning at the endoplasmic reticulum-Golgi transport step in the yeast secretory pathway. Depletion of Ykt6p results in the accumulation of the p1 precursor (endoplasmic reticulum form) of the vacuolar enzyme carboxypeptidase Y and morphological abnormalities consistent with a defect in secretion. Membrane localization of Ykt6p is essential for protein function and is normally mediated by isoprenylation. However, replacement of the isoprenylation motif with a bona fide transmembrane anchor results in a functional protein confirming that membrane localization, but not isoprenylation per se, is required for function. Ykt6p and its homologues are highly conserved from yeast to human as demonstrated by the functional complementation of the loss of Ykt6p by its human counterpart. This is the first example of a human SNARE protein functionally replacing a yeast SNARE. This observation implies that the specific details of the vesicle targeting code, like the genetic code, are conserved in evolution.  相似文献   

3.
The yeast SEC14 gene product is required for the transport of proteins from the Golgi complex. We have cloned the homologous Candida albicans SEC14 gene (CaSEC14) by functional complementation of a Saccharomyces cerevisiae thermosensitive mutant, sec14ts. Some putative TATA boxes have been identified in CaSEC14 and, contrary to S. cerevisiae SEC14, no introns were found in the Candida homologue. Sequence analysis revealed that CaSec14p is a 301 amino acid protein, 67% identical to S. cerevisiae and Kluyveromyces iactis Sec14p, and 61% identical to the 300 amino-terminal residues of Yarrowia lipolytica Sec14p. Hydrophatic profile analysis of CaSec14p suggests a soluble protein without transmembrane domains as has been described for the S. cerevisiae counterpart. While it was easy to disrupt one allele of SEC14 in C. albicans, repeated attempts to disrupt the second allele were unsuccessful, thus suggesting that the gene could be essential for vegetative growth in C. albicans.  相似文献   

4.
A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-alpha-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-alpha-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function.  相似文献   

5.
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother-daughter connection during cell cycle progression.  相似文献   

6.
The evolutionarily conserved Sec61 protein complex mediates the translocation of secretory proteins into the endoplasmic reticulum. To investigate the role of Sec61p, which is the main subunit of this complex, we generated recessive, cold-sensitive alleles of sec61 that encode stably expressed proteins with strong defects in translocation. The stage at which posttranslational translocation was blocked was probed by chemical crosslinking of radiolabeled secretory precursors added to membranes isolated from wild-type and mutant strains. Two classes of sec61 mutants were distinguished. The first class of mutants was defective in preprotein docking onto a receptor site of the translocon that included Sec61p itself. The second class of mutants allowed docking of precursors onto the translocon but was defective in the ATP-dependent release of precursors from this site that in wild-type membranes leads to pore insertion and full translocation. Only mutants of the second class were partially suppressed by overexpression of SEC63, which encodes a subunit of the Sec61 holoenzyme complex responsible for positioning Kar2p (yeast BiP) at the translocation channel. These mutants thus define two early stages of translocation that require SEC61 function before precursor protein transfer across the endoplasmic reticulum membrane.  相似文献   

7.
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.  相似文献   

8.
Class I ADP-ribosylation factors (ARFs) are essential for coatomer and clathrin coat assembly and vesicular transport in the Golgi apparatus. However, little is known about the in vivo regulation of ARF actions. Recently we cloned arfaptin 1, a 39 kDa protein that binds active, GTPgammaS-liganded ARF and translocates with it to Golgi membranes. Here we show that phorbol ester-stimulated phospholipase D (PLD) activity is inhibited in arfaptin 1-overexpressing NIH 3T3 cells and that arfaptin 1 inhibits ARF activation of Golgi-associated PLD. Since PLD activity is thought to play a role in regulating vesicular transport in the secretory pathway, we determined the rate of glycosylation of vesicular stomatitis virus glycoprotein as a measure of protein transport from the endoplasmic reticulum through the Golgi apparatus. Arfaptin 1 overexpression was found to decrease the rate of this reaction approximately two-fold. These data suggest that arfaptin 1 is a regulator of ARF action in the Golgi apparatus.  相似文献   

9.
SNAREs are compartmentally specific membrane proteins required for intracellular membrane fusion. Homologues of the Saccharomyces cerevisiae protein Sec1p interact with, and are likely to be involved in regulation of, the syntaxin family of SNAREs. In yeast there are 7 functionally distinct syntaxins but only four clearly identifiable homologues of Sec1p. One of these, Vps45p, is required for transport from Golgi to late endosomes, and has been implicated in the function of the late endosomal syntaxin Pep12p. However, there is evidence that not all the functions of Pep12p are equally dependent on Vps45p, and conversely that the phenotypes of vps45 mutants cannot be explained entirely by loss of Pep12p activity. We have recently characterised two yeast syntaxins which function in trans-Golgi or endosomal compartments, Tlg1p and Tlg2p. We show here that the principal binding site for Vps45p on intracellular membranes is provided by Tlg2p rather than Pep12p, and that Vps45p is required for stable expression of Tlg2p. Vps45p is also associated with Tlg1p as part of a triple complex containing both Tlg1p and Tlg2p. Since a deltavps45 deltatlg2 double mutant has a more severe vacuolar protein sorting defect than a deltatlg2 mutant, Vps45p cannot only interact with Tlg2p. It appears that the role of Vps45p in protein traffic is more complex than has previously been assumed.  相似文献   

10.
We identified the phosphatidylinositol transfer protein (PITP) as being responsible for a powerful latent, nucleotide-independent, Golgi-vesiculating activity that is present in the cytosol but is only manifested as an uncontrolled activity in a cytosolic protein subfraction, in which it is separated from regulatory components that appear to normally limit its action to the scission of COPI-coated buds from trans-Golgi network membranes. A specific anti-PITP antibody that recognizes the two mammalian PITP isoforms fully inhibited the capacity of the cytosol to support normal vesicle generation as well as the uncontrolled vesiculating activity manifested by the cytosolic protein subfraction. The phosphatidylinositol- (PI) loaded form of the yeast PITP, Sec14p, but not the phosphatidylcholine- (PC) loaded form of the protein, was capable of substituting for the cytosolic subfraction in promoting the scission of coated buds from the trans-Golgi network. At higher concentration, however, Sec14p, when loaded with PI, but not with PC or phosphatidylglycerol, caused by itself an indiscriminate vesiculation of uncoated Golgi membranes that could be suppressed by PC-Sec14p, which also suppresses the uncontrolled vesiculation caused by the cytosolic subfraction. We propose that, by delivering PI to specific sites in the Golgi membrane near the necks of coated buds, PITP induces local changes in the organization of the lipid bilayer, possibly involving PI metabolites, that triggers the fusion of the ectoplasmic faces of the Golgi membrane necessary for the scission of COPI-coated vesicles.  相似文献   

11.
Mnt1p is an alpha 1.2-mannosyltransferase which resides in an early compartment of the Saccharomyces cerevisiae Golgi apparatus. We have shown that the signal-anchor region is sufficient, and the transmembrane domain necessary, for its normal Golgi localization. This is similar to the transmembrane domain-mediated retention of mammalian glycosyltransferases, and distinct from the tail-mediated recycling retention of certain mammalian and yeast trans-Golgi proteins. To examine the mechanism involved in transmembrane domain-mediated retention, we have isolated six classes of mutants which fail to retain Mnt1p-reporter fusions in the early Golgi. These mutants all show additional phenotypes which are consistent with alterations in Golgi function. We have called the mutant classes 'gem', for Golgi enzyme maintenance. GEM3 is identical to the previously cloned gene ANP1, and homologous to VAN1 and MNN9. Together, these define a new class of proteins involved in the organization and functioning of the secretory pathway. Interestingly, Anp1p is localized to the endoplasmic reticulum (ER), implying that some function of the ER is required to maintain a functional Golgi apparatus.  相似文献   

12.
Yeast possess two homologs of the synaptobrevin family of vesicle-associated proteins that are proposed to be involved in membrane recognition and to act as receptors for components of the fusion machinery in neurons. We have previously described the yeast homologs, Snc1 and Snc2, and demonstrated that they localize to secretory vesicles and are required for normal secretion. Yeast lacking Snc protein expression accumulate post-Golgi transport vesicles that contain secretory proteins. Therefore, Snc proteins are essential for the fusion of carrier vesicles with the plasma membrane, and this property appears to have been conserved in evolution. We have now examined whether Snc proteins interact with other components of the late secretory pathway in yeast. Here we show that Snc proteins form a tight genetic and physical interaction with a plasma membrane protein, Sec9. Sec9 is the yeast equivalent of SNAP-25, a second receptor protein from neurons that has been shown to interact with synaptobrevin. We suggest, then, that recognition of the plasma membrane by secretory vesicles may involve the formation of a Snc-Sec9 complex and that this interaction has evolved as a fundamental step in secretory processes.  相似文献   

13.
Phospholipase D (PLD) enzymes catalyze the hydrolysis of phosphatidylcholine and are involved in membrane trafficking and cytoskeletal reorganization. The Saccharomyces cerevisiae SPO14 gene encodes a PLD that is essential for meiosis. We have analyzed the role of PLD in meiosis by examining two mutant proteins, one with a point mutation in a conserved residue (Spo14pK--> H) and one with an amino-terminal deletion (Spo14pDeltaN), neither of which can restore meiosis in a spo14 deletion strain. Spo14pK--> H is enzymatically inactive, indicating that PLD activity is required, whereas Spo14pDeltaN retains PLD catalytic activity in vitro, indicating that PLD activity is not sufficient for meiosis. To explore other aspects of Spo14 function, we followed the localization of the enzyme during meiosis. Spo14p is initially distributed throughout the cell, becomes concentrated at the spindle pole bodies after the meiosis I division, and at meiosis II localizes to the new spore membrane as it surrounds the nuclei and then expands to encapsulate the associated cytoplasm during the formation of spores. The catalytically inactive protein also undergoes relocalization during meiosis; however, in the absence of PLD activity, no membrane is formed. In contrast, Spo14pDeltaN does not relocalize properly, indicating that the failure of this protein to complement a spo14 mutant is due to its inability to localize its PLD activity. Furthermore, we find that Spo14p movement is correlated with phosphorylation of the protein. These experiments indicate that PLD participates in regulated membrane formation during meiosis, and that both its catalytic activity and subcellular redistribution are essential for this function.  相似文献   

14.
The CCC2 gene in the yeast Saccharomyces cerevisiae encodes a P-type ATPase (Ccc2p) required for the export of cytosolic copper to the extracytosolic domain of a copper-dependent oxidase, Fet3p. Ccc2p appears to be both a structural and functional homolog of ATPases impaired in two human disorders of intracellular copper transport, Menkes disease and Wilson disease. In the present work, three approaches were used to determine the locus of Ccc2p-dependent copper export within the secretory pathway. First, like ccc2 mutants, sec mutants blocked in the secretory pathway at steps prior to and including the Golgi complex failed to deliver radioactive copper to Fet3p. Second, also like ccc2 mutants, vps33 and certain other mutants with defects in post-Golgi sorting exhibited phenotypes traceable to deficient copper delivery to Fet3p. These findings were sufficient to explain the respiratory deficiency of these mutants. Third, immunofluorescence microscopy revealed that Ccc2p was distributed among several punctate foci within wild-type cells, consistent with late Golgi or post-Golgi localization. Thus, copper export by Ccc2p appears to be restricted to a late or post-Golgi compartment in the secretory pathway.  相似文献   

15.
COPII-coated ER-derived transport vesicles from Saccharomyces cerevisiae contain a distinct set of membrane-bound polypeptides. One of these polypeptides, termed Erv14p (ER-vesicle protein of 14 kD), corresponds to an open reading frame on yeast chromosome VII that is predicted to encode an integral membrane protein and shares sequence identity with the Drosophila cornichon gene product. Experiments with an epitope-tagged version of Erv14p indicate that this protein localizes to the ER and is selectively packaged into COPII-coated vesicles. Haploid cells that lack Erv14p are viable but display a modest defect in bud site selection because a transmembrane secretory protein, Axl2p, is not efficiently delivered to the cell surface. Axl2p is required for selection of axial growth sites and normally localizes to nascent bud tips or the mother bud neck. In erv14Delta strains, Axl2p accumulates in the ER while other secretory proteins are transported at wild-type rates. We propose that Erv14p is required for the export of specific secretory cargo from the ER. The polarity defect of erv14Delta yeast cells is reminiscent of cornichon mutants, in which egg chambers fail to establish proper asymmetry during early stages of oogenesis. These results suggest an unforeseen conservation in mechanisms producing cell polarity shared between yeast and Drosophila.  相似文献   

16.
Tip20p is an 80 kDa cytoplasmic protein bound to the cytoplasmic surface of the endoplasmic reticulum (ER) by interaction with the type II integral membrane protein Sec20p. Both proteins are required for vesicular transport between the ER and Golgi complex. Recently, sec20-1 was found to be defective in retrograde transport. A collection of temperature-sensitive tip20 mutants are shown to be lethal in combination with ufe1-1, a target SNARE of the ER and ret2-1, yeast delta-COP. A subset of tip20 mutants was found to be lethal in combination with sec20-1, sec21-1, sec22-3 and sec27-1. Since all pairwise combinations of a tip20 mutant, sec20-1, and ufe1-1 are lethal, Tip20p and Sec20p might be part of the docking complex for Golgi-derived retrograde transport vesicles. Since carboxy-terminal tip20 truncations are lethal in combination with mutants in three coatomer subunits, Tip20p might be involved in binding or uncoating of COPI coated retrograde transport vesicles.  相似文献   

17.
Yeast Sec22p participates in both anterograde and retrograde vesicular transport between the endoplasmic reticulum (ER) and the Golgi apparatus by functioning as a v-SNARE (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein receptor) of transport vesicles. Three mammalian proteins homologous to Sec22p have been identified and are referred to as Sec22a, Sec22b/ERS-24, and Sec22c, respectively. The existence of three homologous proteins in mammalian cells calls for detailed cell biological and functional examinations of each individual protein. The epitope-tagged forms of all three proteins have been shown to be primarily associated with the ER, although functional examination has not been carefully performed for any one of them. In this study, using antibodies specific for Sec22b/ERS-24, it is revealed that endogenous Sec22b/ERS-24 is associated with vesicular structures in both the perinuclear Golgi and peripheral regions. Colabeling experiments for Sec22b/ERS-24 with Golgi mannosidase II, the KDEL receptor, and the envelope glycoprotein G (VSVG) of vesicular stomatitis virus (VSV) en route from the ER to the Golgi under normal, brefeldin A, or nocodazole-treated cells suggest that Sec22b/ERS-24 is enriched in the pre-Golgi intermediate compartment (IC). In a well-established semi-intact cell system that reconstitutes transport from the ER to the Golgi, transport of VSVG is inhibited by antibodies against Sec22b/ERS-24. EGTA is known to inhibit ER-Golgi transport at a stage after vesicle/transport intermediate docking but before the actual fusion event. Antibodies against Sec22b/ERS-24 inhibit ER-Golgi transport only when they are added before the EGTA-sensitive stage. Transport of VSVG accumulated in pre-Golgi IC by incubation at 15 degreesC is also inhibited by Sec22b/ERS-24 antibodies. Morphologically, VSVG is transported from the ER to the Golgi apparatus via vesicular intermediates that scatter in the peripheral as well as the Golgi regions. In the presence of antibodies against Sec22b/ERS-24, VSVG is seen to accumulate in these intermediates, suggesting that Sec22b/ERS-24 functions at the level of the IC in ER-Golgi transport.  相似文献   

18.
Many protein kinases are regulated by phosphorylation in the activation loop, which is required for enzymatic activity. Glutamic acid can substitute for phosphothreonine in some proteins activated by phosphorylation, but this substitution (T169E) at the site of activation loop phosphorylation in the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28p blocks biological function and protein kinase activity. Using cycles of error-prone DNA amplification followed by selection for successively higher levels of function, we identified mutant versions of Cdc28p-T169E with high biological activity. The enzymatic and biological activity of the mutant Cdc28p was essentially normally regulated by cyclin, and the mutants supported normal cell cycle progression and regulation. Therefore, it is not a requirement for control of the yeast cell cycle that Cdc28p be cyclically phosphorylated and dephosphorylated. These CDC28 mutants allow viability in the absence of Cak1p, the essential kinase that phosphorylates Cdc28p-T169, demonstrating that T169 phosphorylation is the only essential function of Cak1p. Some growth defects remain in suppressed cak1 cdc28 strains carrying the mutant CDC28 genes, consistent with additional nonessential roles for CAK1.  相似文献   

19.
The exocyst is an essential multiprotein complex mediating polarized secretion in yeast. Here we describe a gene, SEM1, that can multicopy-suppress exocyst mutants sec3-2, sec8-9, sec10-2, and sec15-1. SEM1 is highly conserved among eukaryotic species. Its human homologue, DSS1, has been suggested as a candidate gene for the split hand/split foot malformation disorder. SEM1 is not an essential gene. However, its deletion rescued growth of the temperature-sensitive exocyst mutants sec3-2, sec8-9, sec10-1, and sec15-1 at the restrictive temperature. Cell fractionation showed that Sem1p is mainly cytosolic but also associates with the microsomal fraction. In linear sucrose gradients, Sem1p cosedimented with the exocyst component Sec8p. In diploid cells that normally do not form pseudohyphae (S288C background), deletion of SEM1 triggered pseudohyphal growth. This phenotype was abolished after reintroduction of either SEM1 or the mouse homologue Dss1 into the cells. In diploids that have normal capacity for pseudohyphal growth (Sigma1278b background), deletion of SEM1 enhanced filamentous growth. The functionality of both SEM1 and Dss1 in a differentiation process in yeast suggests that Dss1 indeed could be the gene affected in the split hand/split foot malformation disorder. These results characterize SEM1 as a regulator of both exocyst function and pseudohyphal differentiation and suggest a unique link between these two cellular functions in yeast.  相似文献   

20.
Structure of the Sec7 domain of the Arf exchange factor ARNO   总被引:1,自引:0,他引:1  
Small G proteins switch from a resting, GDP-bound state to an active, GTP-bound state. As spontaneous GDP release is slow, guanine-nucleotide-exchange factors (GEFs) are required to promote fast activation of small G proteins through replacement of GDP with GTP in vivo. Families of GEFs with no sequence similarity to other GEF families have now been assigned to most families of small G proteins. In the case of the small G protein Arf1, the exchange of bound GDP for GTP promotes the coating of secretory vesicles in Golgi traffic. An exchange factor for human Arf1, ARNO, and two closely related proteins, named cytohesin 1 and GPS1, have been identified. These three proteins are modular proteins with an amino-terminal coiled-coil, a central Sec7-like domain and a carboxy-terminal pleckstrin homology domain. The Sec7 domain contains the exchange-factor activity. It was first found in Sec7, a yeast protein involved in secretion, and is present in several other proteins, including the yeast exchange factors for Arf, Geal and Gea2. Here we report the crystal structure of the Sec7 domain of human ARNO at 2 A resolution and the identification of the site of interaction of ARNO with Arf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号