首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过静态法研究了Am(Ⅲ)和Eu(Ⅲ)在Th4(PO4)4P2O7上的吸附行为,主要包括吸附平衡时间、固液比、pH值、离子强度以及富里酸(FA)等因素对吸附的影响.实验结果表明,Am(Ⅲ)和Eu(Ⅲ)在Th4(PO4)4P2O7上的吸附具有相似的pH吸附曲线,pH值的变化对吸附的影响较大,吸附率在pH=2~5时出现剧增;在其他条件相同时,KNO3离子强度从0.01 mol/L增大到0.1 mol/L,吸附率随着离子强度的增大而减小.通过对比实验发现,FA对Am(Ⅲ)和Eu(Ⅲ)在Th4(PO4)4P2O7上的吸附具有促进作用.Am(Ⅲ)和Eu(Ⅲ)在Th4(PO4)4P2O7表面可能形成了表面络合物.吸附剂的表面特征及其吸附机理研究是进一步深入研究的重点.  相似文献   

2.
Am(Ⅲ)在铁氧化物上的吸附行为   总被引:1,自引:1,他引:0  
为了解放射性核素在可能作为高放废物固化体包装容器材料腐蚀产物上的吸附行为,以我国高放废物处置库预选场址--甘肃北山地区深部地下水为介质,研究了包装容器材料的主要组分铁的腐蚀产物Fe2O3, Fe3O4对Am(Ⅲ)的吸附,讨论了pH值、总CO2-3, SO2-4、腐殖酸、Am(Ⅲ)浓度等对吸附的影响,并就可能的吸附机理进行了探讨.实验结果表明,Am(Ⅲ)在铁氧化物上的吸附分配比随水相pH值增大而增大;地下水的化学组分是影响Am(Ⅲ)存在形态和吸附的关键,Am(Ⅲ)在Fe2O3和Fe3O4上的吸附机理为界面配合,可用Freundlich吸附等温式描述.  相似文献   

3.
4.
利用分批处理技术研究Am(Ⅲ)在甘肃北山地区地下深度约为300 m的花岗岩上的吸附行为,讨论多种因素,诸如pH,总CO2-3、SO2-4、腐殖酸、Am(Ⅲ)浓度等对吸附的影响,并就可能的吸附机理进行探讨.实验结果表明:随着溶液pH的升高,Am(Ⅲ)的吸附分配比增大;水相中总CO2-3、SO2-4和腐殖酸浓度增大,不利于Am在花岗岩上的吸附;Am以界面配合物的形式被吸附在花岗岩上,吸附行为可用Freundlich吸附等温式描述.  相似文献   

5.
采用静态批式法研究了Eu(Ⅲ)和Am(Ⅲ)在凹凸棒石上的吸附行为.探讨了液固比(V/m)、震荡时间、pH、离子强度(I)及腐殖酸等因素对吸附的影响.测定了(25±1) ℃下不同离子强度时的吸附等温线.实验结果表明,pH对吸附的影响比较大,在pH=2.5~5.5的吸附边界,离子强度对吸附的影响较小.Eu(Ⅲ)和Am(Ⅲ)在凹凸棒石上的吸附主要通过表面络合进行.  相似文献   

6.
7.
超铀元素Am在膨润土上的吸附行为研究   总被引:1,自引:0,他引:1  
以甘肃北山BS03井地下水为水相,研究了Am(Ⅲ)在膨润土上的吸附行为,讨论了多种因素,如pH值、Na 、总CO32-、SO42-、腐殖酸、Am(Ⅲ)浓度等对吸附的影响,并就可能的吸附机理进行了探讨。结果表明:膨润土对Am(Ⅲ)具有较强的吸附能力,并与Am(Ⅲ)在水相中的存在形态有关;Am(Ⅲ)在膨润土上的吸附机理为界面配合,且为不可逆吸附;地下水中无机离子(Na 、SO42-和CO32-)浓度增大,不利于膨润土对Am(Ⅲ)的吸附;水相中腐殖酸的浓度增大,Am(Ⅲ)在膨润土上的吸附能力明显降低。Am(Ⅲ)在膨润土上的吸附可用Freundlich吸附等温式描述。  相似文献   

8.
以北山BS03#地下水为水相,探究Am(Ⅲ)胶体形成及其在膨润土胶体上的吸附行为。通过Zeta电位激光粒度分析仪与不对称流场流分离检测仪(AF4)和批式实验法探究多种因素,如pH值、不同CO_(2)浓度氛围、离子强度和温度对胶体稳定性和吸附行为的影响。结果表明:Am(Ⅲ)胶体的形成及稳定性和Am(Ⅲ)的水溶液化学性质息息相关,升高温度或增大离子强度会减小Am(Ⅲ)胶体的稳定性,而CO_(2)浓度升高和pH增大则有利于Am(Ⅲ)胶体的形成与稳定性;随着pH的增大,Am(Ⅲ)-膨润土胶体颗粒密度增大,而Am(Ⅲ)的吸附率先减小后增大;离子强度升高有利于Am(Ⅲ)的吸附,但胶体颗粒密度下降;气相CO_(2)浓度升高对颗粒密度和Am(Ⅲ)吸附具有促进作用。  相似文献   

9.
溶解度对于验证地质化学程序的有效性非常重要,而地质化学程序是迁移模型的一部分。241 Am和243 Am是高放废物深地质处置研究中须重点考虑的核素,Am溶解度的准确测定将为Am的深地质处置安全评价提供可靠的数据。本文采用过饱和法测定了低氧高纯氩气氛中,不同恒定温度下,Am(Ⅲ)在甘肃北山花岗岩地下水中的溶解度,并探讨了温度、硫酸根浓度、碳酸氢根浓度及pH值对溶解度的影响。结果显示,Am(Ⅲ)的溶解度随温度和pH值的升高而减小,随起始硫酸根浓度和碳酸氢根浓度的增大而增大。虽然由于地下水中阴离子的配合作用使Am(Ⅲ)在地下水中的溶解度有增大趋势,但由于处置库近场环境中的温度较高,偏碱性地下水中Am(Ⅲ)的溶解度在温度和pH值升高的影响下大幅减小,最终有利于处置安全。  相似文献   

10.
研究了低氧高纯氩气氛中,不同温度下Am(Ⅲ)在甘肃北山花岗岩上的吸附。研究结果表明:北山花岗岩对Am(Ⅲ)的吸附分配系数随着温度的升高而增大,说明花岗岩对Am(Ⅲ)的吸附是吸热反应;并对可能的吸附机理进行了讨论,Am(Ⅲ)在北山花岗岩上的吸附机理主要为表面配合反应,总体表现为不可逆吸附。  相似文献   

11.
在0.1 mol/L NaClO4溶液中研究了Pu(Ⅴ)与H2O2反应的动力学。测定了Pu(Ⅴ)与H2O2的反应速率。探讨了温度以及Fe2+,SO2-4,HCO-3,F-等无机离子的存在对反应的影响。实验结果表明,反应对Pu(Ⅴ)与H2O2呈一级,对溶液中H+呈-1级;速率方程可表示为: -dc(Pu(Ⅴ))/dt=(3.93±1.93)×10-9c(Pu(Ⅴ))c(H2O2)/c(H+)。 随着温度升高,反应速率明显加快,根据Arrhenius规律,计算出了反应的活化能为Ea=84 kJ/mol。地下水中Fe2+,SO2-4,HCO-3,F-等离子的存在,有利于Pu(Ⅴ)的还原。  相似文献   

12.
以40 %辛醇/煤油为稀释剂,研究了3种荚醚:N,N,N',N'-四丁基-3-氧-戊二酰胺(TBOPDA)、N,N,N',N'-四异丁基-3-氧-戊二酰胺(TiBOPDA)和N,N,N',N'-四丁基-3,6-二氧-辛二酰胺(TBDOODA)在硝酸介质中对Am(Ⅲ)和Eu(Ⅲ)的萃取热力学.TBOPDA、TiBOPDA和TBDOODA萃取镅的反应焓变分别为:-80.54、-81.99和-75.88 kJ/mol;求出了萃取反应自由能和熵值的变化;观测了不同平衡酸度下萃入有机相中金属离子的可见吸收光谱.研究结果表明,水相酸度在一定范围内变化时,有机相中金属离子的吸收峰位置和形状没有改变,说明萃取机理在一定酸度内不变.萃合物红外光谱的测量结果表明,萃取金属离子后,3种荚醚的羰基吸收峰均发生了显著位移,TBOPDA和TBDOODA的醚氧键位移分别为6 cm-1和3 cm-1.  相似文献   

13.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

14.
研究了水溶液中制备[99Tcm(CO)2(NO)-L](L=DTPA,EDTA,EHIDA)配合物的2种方法:(1) 由前体[99Tcm(CO)3-L]制备[99Tcm(CO)2(NO)-L];(2)由[99Tcm(CO)2(NO)(H2O)3]2+中间体制备[99Tcm(CO)2(NO)-L];并确定了最佳标记条件.TLC和HPLC结果表明,2种方法得到的配合物放化产率均在90%以上.初步建立了1套在水溶液中简单、高效制备新的[99Tcm(CO)2(NO)]2+类配合物的方法.+基团取代原三羰基锝配合物得到的[99Tcm (CO)2(NO)-L]配合物具有良好的体外稳定性,取代后的配合物脂溶性和电荷性质都发生了改变,为99Tcm放射性药物的研制开辟了新思路.  相似文献   

15.
酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究 Ⅰ.萃取机理研究   总被引:20,自引:5,他引:15  
以40%辛醇-煤汪为稀释剂,研究了三种荚醚:N,N,N’,N’-四丁基-3-氧-戊二酰胺(TBOPDA)、N,N,N’,N’-四异丁基-3-氧-戊二酰胺(TiBOPDA)和N,N,N’,N’-四丁基-3,6-二氧-辛二酰胺(TBDOOA)在硝酸介质中对Am(Ⅲ)和Eu(Ⅲ)的萃取行为,确定了萃合物的组成和萃取反应方程式。通过测量萃取金属离子后有机相的电离度可知,荚 醚与镅和铕没有生成离子型萃合物,  相似文献   

16.
实验研究了以浸渍法制备的负载型Ru/γ-Al2O3催化剂体系上甲烷与氘化氢之间的氢氘交换性能,考察了各反应工艺条件包括反应温度、反应原料气流量、反应原料气中HD/CH4的比等因素对Ru/γ-Al2O3催化剂上甲烷与氘化氢之间的氢氘交换性能的影响,采用程序升温还原(H2-TPR)和X射线粉末衍射(XRD)手段对催化剂进行了检测。实验结果表明,Ru和载体γ-Al2O3发生了强相互作用;在对甲烷与氘化氢间的氢氘交换反应中,Ru/γ-Al2O3催化剂显示出较好的催化活性和稳定性。  相似文献   

17.
研究了HClO4和HNO3体系中双羟基脲(DHU)与HNO2的反应动力学.结果表明,HClO4和HNO3体系下DHU与HNO2的反应动力学速率方程式均为-dc(HNO2)/dt=k·c(HNO2 )1·c(DHU )0·c(H+)-0.15,反应对DHU均呈零级.在HClO4体系下,θ=15 ℃, I=0.5 mol/kg时,反应速率常数k1=(2.37±0.04) mol0.15/(L0.15·min);在HNO3体系下,θ=10 ℃, I=0.5 mol/kg时,反应速率常数k2= (1.29±0.06) mol0.15/(L0.15·min)(n=8).同时考察了反应温度对反应速率的影响,结果表明,随着温度的升高, 反应速率均明显加快, HClO4和HNO3体系对应的反应活化能分别为68.2 kJ/mol和76.8 kJ/mol.在HClO4和HNO3体系中,随着离子强度的增加,氧化还原反应的表观速率常数k'均下降.过量的DHU在HNO3溶液中可以很好的稳定Pu(Ⅲ)48 h而不被氧化.  相似文献   

18.
乙异羟肟酸与Zr(Ⅳ),UO2+2配合物稳定常数的测定   总被引:1,自引:1,他引:0  
对乙异羟肟酸(AHA)与Zr(Ⅳ), UO2 2的配位行为进行了初步研究,测定了AHA与Zr(Ⅳ), UO2 2配合物的稳定常数.结果表明,在HClO4体系中,AHA与Zr(Ⅳ), UO2 2分别发生三、二级配位,其稳定常数分别为:β1(Zr(Ⅳ))=(6.7±0.1)×1013,β2(Zr(Ⅳ)) =(1.8±0.1)×1025,β3(Zr(Ⅳ))=(3.8±0.3)×1035;β1(UO2 2)=(8.6±0.4)×107,β2(UO2 2)=(3.8±0.1)×1014.  相似文献   

19.
Fe3O4纳米磁性微粒对钴和锶的吸附   总被引:1,自引:0,他引:1  
为降低90Sr和60Co对环境的污染,用共沉淀法制备了粒径为10 nm的Fe3O4磁性微粒,分散于水中生成饱和磁化强度(M)为350 kA/m的水基磁流体,用此磁流体对Co2+, Sr2+进行了吸附研究。结果表明,在45 ℃,吸附60 min时,Co2+, Sr2+分别在pH=7和pH=8下达到吸附平衡,吸附容量为1.794, 0.962 mmol/g。用Langmuir等温模型、假二级动力学模型探讨了Fe3O4纳米磁性微粒对Co2+, Sr2+的吸附机制,研究结果表明,该过程是单离子层吸附过程。  相似文献   

20.
采用静态吸附容量法,测定了温度273~303K、压力0~1kPa范围内,CO和CO2在UO2表面的吸附等温线,研究了CO和CO2的吸附热力学性质。结果表明,Langmuir方程和Freundlich方程分别是描述CO和CO2吸附的最优模型方程。CO2的吸附强度明显高于CO的,实验条件下,CO和CO2的最大吸附量分别为0.36和1.25μmol/g。CO的吸附热为26kJ/mol,表明吸附为物理吸附;CO2的吸附热随吸附量增加而减小,当吸附量由0.3μmol/g增至0.8μmol/g时,吸附热由46kJ/mol降至37kJ/mol,表明吸附同时存在化学吸附和物理吸附。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号