共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we proposed an efficient algorithm, called PCP-Miner (Pointset Closed Pattern Miner), for mining frequent closed patterns from a pointset database, where a pointset contains a set of points. Our proposed algorithm consists of two phases. First, we find all frequent patterns of length two in the database. Second, for each pattern found in the first phase, we recursively generate frequent closed patterns by a frequent pattern tree in a depth-first search manner. Since the PCP-Miner does not generate unnecessary candidates, it is more efficient and scalable than the modified Apriori, SASMiner and MaxGeo. The experimental results show that the PCP-Miner algorithm outperforms the comparing algorithms by more than one order of magnitude. 相似文献
2.
In this paper, given a set of sequence databases across multiple domains, we aim at mining multi-domain sequential patterns, where a multi-domain sequential pattern is a sequence of events whose occurrence time is within a pre-defined time window. We first propose algorithm Naive in which multiple sequence databases are joined as one sequence database for utilizing traditional sequential pattern mining algorithms (e.g., PrefixSpan). Due to the nature of join operations, algorithm Naive is costly and is developed for comparison purposes. Thus, we propose two algorithms without any join operations for mining multi-domain sequential patterns. Explicitly, algorithm IndividualMine derives sequential patterns in each domain and then iteratively combines sequential patterns among sequence databases of multiple domains to derive candidate multi-domain sequential patterns. However, not all sequential patterns mined in the sequence database of each domain are able to form multi-domain sequential patterns. To avoid the mining cost incurred in algorithm IndividualMine, algorithm PropagatedMine is developed. Algorithm PropagatedMine first performs one sequential pattern mining from one sequence database. In light of sequential patterns mined, algorithm PropagatedMine propagates sequential patterns mined to other sequence databases. Furthermore, sequential patterns mined are represented as a lattice structure for further reducing the number of sequential patterns to be propagated. In addition, we develop some mechanisms to allow some empty sets in multi-domain sequential patterns. Performance of the proposed algorithms is comparatively analyzed and sensitivity analysis is conducted. Experimental results show that by exploring propagation and lattice structures, algorithm PropagatedMine outperforms algorithm IndividualMine in terms of efficiency (i.e., the execution time). 相似文献
3.
Shichao Zhang Zifang Huang Jilian Zhang Xiaofeng Zhu 《Knowledge and Information Systems》2008,14(1):81-100
Research on traditional association rules has gained a great attention during the past decade. Generally, an association rule A → B is used to predict that B likely occurs when A occurs. This is a kind of strong correlation, and indicates that the two events will probably happen simultaneously. However, in real world applications such as bioinformatics and medical research, there are many follow-up correlations between itemsets A and B, such as, B is likely to occur n times after A has occurred m times. That is, the correlative itemsets do not belong to the same transaction. We refer to this relation as a follow-up correlation pattern (FCP). The task of mining FCP patterns brings more challenges on efficient processing than normal pattern discovery because the number of potentially interesting patterns becomes extremely large as the length limit of transactions no longer exists. In this paper, we develop an efficient algorithm to identify FCP patterns in time-related databases. We also experimentally evaluate our approach, and provide extensive results on mining this new kind of patterns. This work is partially supported by Australian large ARC grants (DP0449535, DP0559536 and DP0667060), a China NSF major research Program (60496327), a China NSF grant (60463003), an Overseas Outstanding Talent Research Program of the Chinese Academy of Sciences (06S3011S01), an Overseas-Returning High-level Talent Research Program of China Hunan-Resource Ministry, and an Innovation Project of Guangxi Graduate Education (2006106020812M35). 相似文献
4.
In this paper, we propose an efficient graph-based mining (GBM) algorithm for mining the frequent trajectory patterns in a spatial-temporal database. The proposed method comprises two phases. First, we scan the database once to generate a mapping graph and trajectory information lists (TI-lists). Then, we traverse the mapping graph in a depth-first search manner to mine all frequent trajectory patterns in the database. By using the mapping graph and TI-lists, the GBM algorithm can localize support counting and pattern extension in a small number of TI-lists. Moreover, it utilizes the adjacency property to reduce the search space. Therefore, our proposed method can efficiently mine the frequent trajectory patterns in the database. The experimental results show that it outperforms the Apriori-based and PrefixSpan-based methods by more than one order of magnitude. 相似文献
5.
6.
Efficient moving average transform-based subsequence matching algorithms in time-series databases 总被引:1,自引:0,他引:1
Moving average transform is very useful in finding the trend of time-series data by reducing the effect of noise, and has been used in many areas such as econometrics. Previous subsequence matching methods with moving average transform, however, are problematic in that, since they must build multiple indexes in supporting transform of arbitrary order, they incur index overhead both in storage space and in update maintenance. To solve this problem, we propose a single-index approach to subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single-index approach, we can reduce both the storage space and the index maintenance overhead. In explaining the single-index approach, we first introduce the notion of poly-order moving average transform by generalizing the original definition of moving average transform. We then formally prove the correctness of poly-order transform-based subsequence matching. We also propose two subsequence matching methods based on poly-order transform that efficiently support moving average transform of arbitrary order. Experimental results for real stock data show that, compared with the sequential scan, our methods improve average performance significantly, by a factor of 22.6-33.6. Also, compared with cases in which an index is built for every moving average order, our methods reduce storage space and maintenance effort significantly while incurring only marginal performance degradation. Our approach entails the additional advantage of being generalized to support many other transforms in addition to moving average transform. Therefore, we believe that our approach will be widely used in many transform-based subsequence matching methods. 相似文献
7.
Hui-Ling Hu 《Information Sciences》2008,178(19):3683-3696
8.
Subsequence matching is an operation that finds subsequences whose changing patterns are similar to a given query sequence from time-series databases. This paper identifies a performance bottleneck in subsequence matching, and then proposes an effective method that substantially improves the performance of entire subsequence matching by resolving the performance bottleneck. First, we analyze the disk access and CPU processing times required during the index searching and post-processing steps of subsequence matching through preliminary experiments. Based on these results, we show that the post-processing step is a main performance bottleneck in subsequence matching. Then, we argue that the optimization of the post-processing step is a crucial issue overlooked in previous approaches. In order to resolve the performance bottleneck, we propose a simple yet highly effective method for expediting the post-processing step. By rearranging the order of candidate subsequences to be compared with a query sequence, our method completely eliminates the redundancies of disk accesses and CPU processing that occur in the post-processing step. Our method is fairly efficient, and does not incur any false dismissal. We quantitatively demonstrate the superiority of our method through extensive experimentation. The results show that our method produces a significantly faster post-processing step; When using a data set of real-world stock sequences, our method was 43.36-96.75 times faster than previous methods, and when using data sets of large numbers of synthetic sequences, our method was 12.48-26.95 times faster than previous methods. Also, the results show that our method reduces the weight of the post-processing step over entire subsequence matching from more than 97% to less than 67%. This implies that our method successfully resolves the performance bottleneck in subsequence matching. As a result, our method provides excellent performance in entire subsequence matching. Compared with previous methods, our method is 16.17-32.64 times faster when using a data set of real-world stock sequences and 8.64-14.29 times faster when using data sets of large numbers of synthetic sequences. 相似文献
9.
Tzung-Pei Hong Kuei-Ying Lin Shyue-Liang Wang 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2006,10(10):925-932
Many researchers in database and machine learning fields are primarily interested in data mining because it offers opportunities to discover useful information and important relevant patterns in large databases. Most previous studies have shown how binary valued transaction data may be handled. Transaction data in real-world applications usually consist of quantitative values, so designing a sophisticated data-mining algorithm able to deal with various types of data presents a challenge to workers in this research field. In the past, we proposed a fuzzy data-mining algorithm to find association rules. Since sequential patterns are also very important for real-world applications, this paper thus focuses on finding fuzzy sequential patterns from quantitative data. A new mining algorithm is proposed, which integrates the fuzzy-set concepts and the AprioriAll algorithm. It first transforms quantitative values in transactions into linguistic terms, then filters them to find sequential patterns by modifying the AprioriAll mining algorithm. Each quantitative item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The patterns mined out thus exhibit the sequential quantitative regularity in databases and can be used to provide some suggestions to appropriate supervisors. 相似文献
10.
Discovering contrasts between collections of data is an important task in data mining. In this paper, we introduce a new type
of contrast pattern, called a Minimal Distinguishing Subsequence (MDS). An MDS is a minimal subsequence that occurs frequently in one class of sequences and infrequently in sequences of
another class. It is a natural way of representing strong and succinct contrast information between two sequential datasets
and can be useful in applications such as protein comparison, document comparison and building sequential classification models.
Mining MDS patterns is a challenging task and is significantly different from mining contrasts between relational/transactional
data. One particularly important type of constraint that can be integrated into the mining process is the gap constraint.
We present an efficient algorithm called ConSGapMiner (Contrast Sequences with Gap Miner), to mine all MDSs satisfying a minimum and maximum gap constraint, plus a maximum length
constraint. It employs highly efficient bitset and boolean operations, for powerful gap-based pruning within a prefix growth
framework. A performance evaluation with both sparse and dense datasets, demonstrates the scalability of ConSGapMiner and shows its ability to mine patterns from high dimensional datasets at low supports. 相似文献
11.
Sequential pattern mining has been studied extensively in the data mining community. Most previous studies require the specification of a min_support threshold for mining a complete set of sequential patterns satisfying the threshold. However, in practice, it is difficult for users to provide an appropriate min_support threshold. To overcome this difficulty, we propose an alternative mining task: mining top-k frequent closed sequential patterns of length no less than min_, where k is the desired number of closed sequential patterns to be mined and min_ is the minimal length of each pattern. We mine the set of closed patterns because it is a compact representation of the complete set of frequent patterns. An efficient algorithm, called TSP, is developed for mining such patterns without min_support. Starting at (absolute) min_support=1, the algorithm makes use of the length constraint and the properties of top-k closed sequential patterns to perform dynamic support raising and projected database pruning. Our extensive performance study shows that TSP has high performance. In most cases, it outperforms the efficient closed sequential pattern-mining algorithm, CloSpan, even when the latter is running with the best tuned min_support threshold. Thus, we conclude that, for sequential pattern mining, mining top-k frequent closed sequential patterns without min_support is more preferable than the traditional min_support-based mining. 相似文献
12.
A time-series database is a set of data sequences, each of which is a list of changing values of an object in a given period of time. Subsequence matching is an operation that searches for such data subsequences whose changing patterns are similar to a query sequence in a time-series database. This paper addresses a performance issue of time-series subsequence matching. First, we quantitatively examine the performance degradation caused by the window size effect, and then show that the performance of subsequence matching with a single index is not satisfactory in real applications. We claim that index interpolation is a fairly effective tool to solve this problem. Index interpolation performs subsequence matching by selecting the most appropriate one from multiple indexes built on windows of their distinct sizes. For index interpolation, we need to decide the sizes of windows for multiple indexes to be built. In this paper, we solve the problem of selecting optimal window sizes from the perspective of physical database design. Given a set of pairs 〈length, frequency〉 of query sequences to be performed in a target application and a set of window sizes for building multiple indexes, we devise a formula that estimates the overall cost of all the subsequence matchings performed in a target application. By using this formula, we propose an algorithm that determines the optimal window sizes for maximizing the performance of entire subsequence matchings. We formally prove the optimality as well as the effectiveness of the algorithm. Finally, we show the superiority of our approach by performing extensive experiments with a real-life stock data set and a large volume of synthetic data sets. 相似文献
13.
Sequential rule mining is an important data mining task used in a wide range of applications. However, current algorithms for discovering sequential rules common to several sequences use very restrictive definitions of sequential rules, which make them unable to recognize that similar rules can describe a same phenomenon. This can have many undesirable effects such as (1) similar rules that are rated differently, (2) rules that are not found because they are considered uninteresting when taken individually, (3) and rules that are too specific, which makes them less likely to be used for making predictions. In this paper, we address these problems by proposing a more general form of sequential rules such that items in the antecedent and in the consequent of each rule are unordered. We propose an algorithm named CMRules for mining this form of rules. The algorithm proceeds by first finding association rules to prune the search space for items that occur jointly in many sequences. Then it eliminates association rules that do not meet the minimum confidence and support thresholds according to the sequential ordering. We evaluate the performance of CMRules in three different ways. First, we provide an analysis of its time complexity. Second, we compare its performance (in terms of execution time, memory usage and scalability) with an adaptation of an algorithm from the literature that we name CMDeo. For this comparison, we use three real-life public datasets, which have different characteristics and represent three kinds of data. In many cases, results show that CMRules is faster and has a better scalability for low support thresholds than CMDeo. Lastly, we report a successful application of the algorithm in a tutoring agent. 相似文献
14.
Tony Cheng-Kui Huang 《Applied Soft Computing》2012,12(3):1068-1086
Comprehending changes of customer behavior is an essential problem that must be faced for survival in a fast-changing business environment. Particularly in the management of electronic commerce (EC), many companies have developed on-line shopping stores to serve customers and immediately collect buying logs in databases. This trend has led to the development of data-mining applications. Fuzzy time-interval sequential pattern mining is one type of serviceable data-mining technique that discovers customer behavioral patterns over time. To take a shopping example, (Bread, Short, Milk, Long, Jam), means that Bread is bought before Milk in a Short period, and Jam is bought after Milk in a Long period, where Short and Long are predetermined linguistic terms given by managers. This information shown in this example reveals more general and concise knowledge for managers, allowing them to make quick-response decisions, especially in business. However, no studies, to our knowledge, have yet to address the issue of changes in fuzzy time-interval sequential patterns. The fuzzy time-interval sequential pattern, (Bread, Short, Milk, Long, Jam), became available in last year; however, is not a trend this year, and has been substituted by (Bread, Short, Yogurt, Short, Jam). Without updating this knowledge, managers might map out inappropriate marketing plans for products or services and dated inventory strategies with respect to time-intervals. To deal with this problem, we propose a novel change mining model, MineFuzzChange, to detect the change in fuzzy time-interval sequential patterns. Using a brick-and-mortar transactional dataset collected from a retail chain in Taiwan and a B2C EC dataset, experiments are carried out to evaluate the proposed model. We empirically demonstrate how the model helps managers to understand the changing behaviors of their customers and to formulate timely marketing and inventory strategies. 相似文献
15.
Anthony J.T. Lee Author Vitae Ying-Ho Liu Author Vitae Author Vitae Hsiu-Hui Lin Author Vitae Author Vitae 《Journal of Systems and Software》2009,82(4):603-618
In this paper, we propose a novel algorithm, called 9DSPA-Miner, to mine frequent patterns from an image database, where every image is represented by the 9D-SPA representation. Our proposed method consists of three phases. First, we scan the database once and create an index structure. Next, the index structure is scanned to find all frequent patterns of length two. Finally, we use the frequent k-patterns (k ? 2) to generate candidate (k + 1)-patterns and check if the support of each candidate generated is not less than the user-specified minimum support threshold by using the index structure. Then, the steps in the third phase are repeated until no more frequent patterns can be found. Since the 9DSPA-Miner algorithm uses the characteristics of the 9D-SPA representation to prune most of impossible candidates, the experiment results demonstrate that it is more efficient and scalable than the modified Apriori method. 相似文献
16.
带时间特征的序列模式挖掘算法TESP 总被引:4,自引:0,他引:4
引入序列模式时间特征的概念,并提出了一个带时间约束的序列模式挖掘算法,称做TESP(Time-enriched Sequential Pattern mining),该算法在找出模式的同时,也给出了序列模式的时间特征,并且允许用户在挖掘之前对模式的这些时间特征进行限制,提高了序列模式挖掘的灵活性和有用性。 相似文献
17.
18.
序列模式挖掘研究与发展 总被引:1,自引:1,他引:0
序列模式挖掘是数据挖掘的一个重要研究课题,它在很多领域中都有着广泛的应用.首先讨论了序列模式挖掘的相关背景,然后对序列模式挖掘进行分类,并在此基础上对每一类序列模式挖掘算法的特点进行了介绍和比较;最后,对序列模式挖掘未来的研究重点进行展望,以便研究者对序列模式挖掘做进一步的研究. 相似文献
19.
WebLog访问序列模式挖掘 总被引:4,自引:0,他引:4
WebLog挖掘的基本思想是将数据挖掘技术应用于Web服务器的日志文件。通过WebLog的序列模式挖掘可以改善Web的信息服务。该文介绍了传统的WebLog中访问序列模式挖掘的方法,并在此基础上提出了一种对WAP-tree的改进构造方法。 相似文献
20.
As the total amount of traffic data in networks has been growing at an alarming rate, there is currently a substantial body of research that attempts to mine traffic data with the purpose of obtaining useful information. For instance, there are some investigations into the detection of Internet worms and intrusions by discovering abnormal traffic patterns. However, since network traffic data contain information about the Internet usage patterns of users, network users’ privacy may be compromised during the mining process. In this paper, we propose an efficient and practical method that preserves privacy during sequential pattern mining on network traffic data. In order to discover frequent sequential patterns without violating privacy, our method uses the N-repository server model, which operates as a single mining server and the retention replacement technique, which changes the answer to a query probabilistically. In addition, our method accelerates the overall mining process by maintaining the meta tables in each site so as to determine quickly whether candidate patterns have ever occurred in the site or not. Extensive experiments with real-world network traffic data revealed the correctness and the efficiency of the proposed method. 相似文献