首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
D. Reisser  P. Boucrot 《Lipids》1978,13(11):796-800
The addition of total phospholipids, phosphatidylcholines, triglycerides, cholesterol or glycerol to incubation media containing rat pancreatic juice and bile labeled with [9,103H2] oleic acid (90% of the radioactivity present as phospholipids) had no effect on the hydrolysis of bile endogenous phospholipids. The introduction of 2 or 10 mg of phosphatidylcholines and 0.5 ml of bile (≈ 1.5 mg of phospholipids)into the rat upper duodenum decreased the rate of absorption of rative bile phospholipids. It was not followed by an increase of free fatty acids released from biliary phospholipids in the intestinal lumen. The introduction of bile (0.5 ml) and small amounts of triolein (1.4–3.5 mg) into the duodenum had little effect on the rate of hydrolysis and absorption of native bile phospholipids, but caused a reduced absorption of the free fatty acids released or those coming from initial nonphosphorus biliary lipids. The introduction of bile (0.5 ml) and large amounts of triolein (30 mg) into the duodenum increased the rates of hydrolysis and absorption of endogenous bile phospholipids. These observations suggest that luminal lipid components can modify the organization of luminal micelles and, consequently, the action of the pancreatic phospholipase A2 and the absorption of bile lipids.  相似文献   

2.
C. H. Tsai  J. E. Kinsella 《Lipids》1982,17(12):848-852
Suspension cell cultures of cocoa bean rapidly incorporated palmitic, stearic, oleic and linoleic acids into cellular lipids. Thus, 75 and 20% of [1-14C] palmitic acid was incorporated into polar lipids and triglycerides, respectively, after 48 hr. When [1-14C] oleic and [1-14C] linoleic acid were added separately, polar lipids consistently contained most of the radioactive fatty acids. Ca. 60% of the stearic acid accumulated as unesterified fatty acid in the cells. Palmitic and stearic acid were not desaturated, but oleic acid and linoleic acid were further desaturated. The kinetics of conversion of oleic acid and linoleic acid suggested a sequential desaturation pathway of 18∶1→18∶2→18∶3 in cocoa bean cell suspensions.  相似文献   

3.
Lipids from five cultivars of highbush blueberries (Vaccinium corymbosum L.) were extracted and fractionated into neutral lipids (60–66%), glycolipids (20–22%) and phospholipids (14–18%). The major fatty acids in all fractions were palmitic (16∶0), oleic (18∶1), linoleic (18∶2), and linolenic (18∶3) acids. All lipid classes had a large concentration of C18 polyunsaturated acids (84–92%), indicating that blueberries are a rich source of linoleic and linolenic acids. Changes in the fatty acid composition of neutral lipids and phospholipids were not significantly different among the five cultivars, but significant differences were noted in the ratios of linoleic and linolenic acids in the glycolipids fraction.  相似文献   

4.
Rates of total and peroxisomal fatty acid oxidation were estimated from the production of14C-labeled CO2 and acid-soluble products from differently labeled [14C]fatty acids, in the absence and presence of antimycinrotenone, in homogenates of liver, heart and m. quadriceps. Total and peroxisomal oxidation rates of palmitic, oleic and linoleic acid were 3–4 times higher than those of arachidonic and adrenic acid which had higher oxidation rates than those of lignoceric and erucic acid. The peroxisomal contribution to the oxidation of the last fatty acids was similar to or higher than that of palmitic acid. For all fatty acids tested in these tissues, the mitochondrial contribution to β-oxidation was higher than the peroxisomal contribution. Production of14CO2 and14C-labeled, acid-soluble metabolites from [13-14]arachidonic acid indicated that polyunsaturated fatty acids can be chain-shortened beyond their double bonds in m. quadriceps and heart as well as in liver. Although 2,4-dienoyl-CoA reductase requires NADPH, addition of this coenzyme did not influence arachidonic acid oxidation. Arachidonic acid oxidation was inhibited by palmitic acid in mitochondria and peroxisomes, but arachidonic acid had only a slight effect on palmitic acid oxidation.  相似文献   

5.
Pure cardiolipins (1,3-diphosphatidylglycerol) were prepared from mitochondria of heart, liver and kidney from 21-day-old male Wistar rats and submitted toNaja naja venom phospholipase A2 (EC 3.1.1.4) action. Incubation conditions were controlled carefully, and a complete hydrolysis of cardiolipin to lysocardiolipin {di [1 (1″) acylsn-glycero-3-phosphoryl] 1′, 3′-sn-glycerol} and fatty acids from positions 2 (2″) was obtained in less than two hr practically without side reactions. Cardiolipins from the three organs contained low levels of saturated fatty acids; stearic acid accounted for 0.4–0.7% and palmitic acid for 1.4–3.5% of total fatty acids. These percentages apparently depended on the organ. In all three cases, linoleic acid was the major component, but its percentage varied from 62–78% of total fatty acids. Acyl chains linked to positions 1 (1″) of all three cardiolipin preparations exhibited a similar pattern; they were composed of linoleic acid for 85–89%. This fatty acid also was the main component esterified at position 2 (2″), but its percentage was much more variable: from 39.8% in heart to 51.2% in kidney and 67.8% in liver mitochondria. The remaining acids comprised octadecenoic and polyunsaturated fatty acids with more than 18 carbon atoms in different proportions. As opposed to other phospholipids,cis-vaccenic acid, and not oleic acid, was the main octadecenoic acid present in cardiolipins. Octadecenoic acids were nine- to 10-fold more concentrated at positions 2 (2″) than at positions 1 (1″). The percentage ofcis-vaccenic acid was four- to five-fold higher than that of oleic acid at positions 2 (2″), whereas oleic acid dominated at positions 1 (1″). From results presented in this study and selected literature data, it may be concluded that fatty acids are asymmetrically distributed in cardiolipins of different origins, with linoleic acid showing a definite preference for position 1 (1″).  相似文献   

6.
The chylomicron phosphatidylcholines from rats fed safflower oil or triolein were isolated and separated into four different fractions according to the degree of unsaturation. Fraction 1, which was rich in palmitic, stearic and oleic acid, was a minor fraction (7.6–11.6 mole%) during the absorption of safflower oil, but was quantitatively important (27–51 mole%) after triolein feeding when significant amounts of dioleoylphosphatidylcholine were present. Fraction 2, which was a major fraction in all the experiments, contained linoleic acid in combination with a saturated or monounsaturated fatty acid. The third fraction contained mainly linoleic acid and was present only after safflower oil feeding. This indicates that dilinoleoyl-phosphatidylcholine is formed in the intestine after ingestion of linoleic acid. Fraction 4, which was rich in arachidonic acid and saturated fatty acids, accounted for 15–20 mole% of the chylomicron phosphatidylcholines with both kinds of fat meals. Incorporation of3H-choline indicated that the dilinoleoyl- and dioleoyl-phosphatidylcholines were formed by synthesis de novo while the majority of the rem aining phosphatidylcholines originated partly from acylated biliary lysolecithins and partly from the existing pool of mucosal phospholipids not formed during active fat absorption.  相似文献   

7.
Uptake and metabolism of saturated (16∶0, 18∶0) and unsaturated [18∶1(n−9), 18∶2(n−6), 18∶3(n−3)] fatty acids by cultured epimastigotes ofTrypanosoma cruzi were studied. Between 17.5 and 33.5% of the total radioactivity of [1-14C]labeled fatty acids initially added to the culture medium was incorporated into the lipids ofT. cruzi and mostly choline and ethanolamine phospholipids. As demonstrated by argentation thin layer chromatography, gas liquid chromatography and ozonolysis of the fatty acids synthesized, exogenous palmitic acid was elongated to stearic acid, and the latter was desaturated to oleic acid and 18∶2 fatty acid. The 18∶2 fatty acid was tentatively identified as linoleic acid with the first bond in the Δ9 position and the second bond toward the terminal methyl end. Exogenous stearic acid was also desaturated to oleic and 18∶2 fatty acid, while oleic acid was only converted into 18∶2. All of the saturated and unsaturated fatty acids investigated were also converted to a small extent (2–4%) into polyunsaturated fatty acids. No radioactive aldehyde methyl ester fragments of less than nine carbon atoms were detected after ozonolysis of any of the fatty acids studied. These results demonstrate the existence of Δ9 and either Δ12 or Δ15 desaturases, or both, inT. cruzi and suggest that Δ6 desaturase or other desaturases of the animal type are likely absent in cultured forms of this organism.  相似文献   

8.
The green algaPyramimonas grossii orginating in the coastal waters of the Atlantic Ocean Argentina was subcultured until a monoalgal culture was obtained. The fatty acid composition of the alga grown in a mineral medium at 12 C was determined by gas liquid chromatography (GLC) on 2 columns. The major fatty acids were oleic, linoleic, palmitic and α-linolenic acids, but the 20-carbon polyunsaturated acids, 20∶4ω6 and 20∶5ω3, respectively, belonging to the linoleic and α-linolenic series, were also found. Incubation with [14C] oleate, [14C] acetate, [14C] linoleate and [14C] α-linolenate suggests that linoleate is not directly converted to α-linolenate. [14C] Acetate was easily converted to palmitic, palmitoleic and oleic acids. However, after 48 hr of incubation, only traces of radioactivity were detected in linoleic acid and no label was found in α-linolenic acid.  相似文献   

9.
Arachidonic acid and its leukotriene metabolites have been shown to stimulate surfactant secretion by alveolar type II cells. The present study was undertaken to determine the effects of various unsaturated fatty acids, including eicosapentaenoic acid, on surfactant secretion. Surfactant secretion was expressed as the percent of [3H]choline-derived phospholipids released into culture medium by type II pneumocytes of adult rats. Consistent with the earlier findings, arachidonic acid stimulated secretion in a concentration-dependent fashion (3.5–21 μM), doubling baseline secretion at 21 μM. Eicosapentaenoic acid was found to be equally effective as arachidonic acid in stimulating secretion. A comparison with palmitic, oleic and linoleic acids revealed that highly unsaturated fatty acids stimulated secretion to the greatest extent. This was supported by a positive correlation between degree of unsaturation (i.e., 0, 1, 2, 4 and 5 double bonds) and stimulation of surfactant secretion. In the present study, exogenous leukotriene E4 (10−13–10−6) did not stimulate surfactant secretion. Neither nordihydroguaiaretic acid (0.1μM) nor indomethacin (0.1μM) affected arachidonic acid-stimulated secretion. The stimulatory effects of arachidonic acid and eicosapentaenoic acid on surfactant secretion were related to the highly unsaturated nature of the fatty acids and were not mediated by increased levels of cyclic adenosine monophosphate or calcium.  相似文献   

10.
We examined the effect of diet on gallstone incidence and the composition of biliary phosphatidylcholines in methyltestosterone-treated female hamsters. These hamsters were fed a nutritionally adequate purified lithogenic diet containing 2% corn oil, 4% butterfat, 0.3% cholesterol, and 0.05% methyltestosterone, resulting in a cholesterol gallstone incidence of 86%. This incidence was lowered when mono-and polyunsaturated fats or fatty acids were added to the diet: 2.5% oleic acid resulted in total prevention of cholesterol cholelithiasis, 2.5% linoleic acid, and 4% safflower oil (78% linoleic acid content) reduced gallstone incidence to 26 and 8%, respectively. An additional 4% butterfat (29% oleic acid content) produced gallstones in 50% of the animals. At the end of the 6-wk feeding period, the bile of all hamsters was supersaturated with cholesterol. The major biliary phosphatidylcholine species in all groups were (sn-1-sn-2): 16:0–18:2, 16:0–18:1, 18:0–18:2, 16:0–20:4, and 18:2–18:2. The safflower oil-and linoleic acidfed hamsters exhibited an enrichment of 16:0–18:2 (16–18%); added butterfat or oleic acid increased the proportion of 16:0–18:1 (9 and 25%, respectively). We conclude that the phosphatidylcholine molecular species in female hamster bile can be altered by dietary fats/fatty acids and that mono-and polyunsaturated fatty acids play a role in suppressing the induced cholelithiasis.  相似文献   

11.
Genetic diversity for lipid content and fatty acid profile in rice bran   总被引:5,自引:0,他引:5  
Rice (Oryza sativa L.) bran contains valuable nutritional constituents, which include lipids with health benefits. A germplasm collection consisting of 204 genetically diverse rice accessions was grown under field conditions and evaluated for total oil content and fatty acid (FA) composition. Genotype effects were highly statistically significant for lipid content and FA profile (P<0.001). Environment (year) significantly affected oil content (P<0.05), as well as stearic, oleic, linoleic, and linolenic acids (all with P<0.01 or lower), but not palmitic acid. The oil content in rice bran varied relatively strongly, ranging from 17.3 to 27.4% (w/w). The major FA in bran oil were palmitic, oleic, and linoleic acids, which were in the ranges of 13.9–22.1, 35.9–49.2, and 27.3–41.0%, respectively. The ratio of saturated to unsaturated FA (S/U ratio) was highly related to the palmitic acid content (r 2=0.97). Japonica lines were characterized by a low palmitic acid content and S/U ratio, whereas Indica lines showed a high palmitic acid content and a high S/U ratio. The variation found suggests it is possible to select for both oil content and FA profile in rice bran.  相似文献   

12.
Philippe Boucrot 《Lipids》1972,7(5):282-288
Bile previously labeled with tritiated oleic acid (the main radioactivity was on bile phospholipids) was mixed with pure isolated phospholipids previously labeled with14C oleic acid; this mixture was perfused during 6 or 23 hr into the duodenum of test rats bearing a bile fistula. At the time of decapitation, in the small intestine a large hydrolysis of the14C phospholipids was found. In contrast no bile phospholipid hydrolysis was observed. In the collected bile samples of the test rats, no14C could be detected (this means a very large decrease of the14C fatty acids specific activities by the body fatty acids), and the tritiated fatty acids specific activities were only 2.5–12 times lower than in the perfused bile. These results can be explained, assuming that the bile phospholipids enter in an entero-hepatic circulation and are preserved from the dilution in a large pool of lipids.  相似文献   

13.
Peter J. H. Jones 《Lipids》1994,29(7):491-495
The objective of this study was to examine whether whole body oxidation rates of dietary linoleic, α-linolenic and oleic acids differ when the acids are provided in identical quantities. Male rats were fed for 10 wk a 15% fat (w/w) diet containing equal amounts of linoleic, α-linolenic and oleic acids (22.7, 23.0 and 23.2% of total fatty acids, respectively). At week 10, after overnight fasting, rats were intragastrically administered 20 μCi of either [1-14C]-labelled linoleic, α-linolenic or oleic acid in a 200-μL bolus of oil containing equal quantities of each fatty acid. The appearance of14CO2 in expired air was then monitored hourly for 12h for each animal. A preliminary study had shown that growth and food consumption patterns in animals consuming the oil containing equal quantities of each of the fatty acids paralleled the patterns of animals that were self-selecting among separate diets, each of which contained one of the component oils. The appearance of14C, expressed as percent dose administered, peaked at 2–3 h post-dose for14C-labelled linoleic (5.28±0.37%/h), α-linolenic (6.92±0.51%/h) and oleic (5.98±0.44%/h) acids. Statistically these values were not significantly different. Cumulative14CO2 excretion rates over 12 h were also similar for linoleic (27.2±0.9%), α-linolenic (26.8±1.2%) and oleic (25.9±1.2%) acids. The results suggest that the rat's capacity to oxidize 18-carbon unsaturated fatty acids is not affected by fatty acid unsaturation when these fatty acids are provided at equal dietary levels.  相似文献   

14.
P. Boucrot  J. R. Clement 《Lipids》1971,6(9):652-656
Mixtures of fresh bile of the rat and of isolated hepatic phospholipids (one or the other of these components having been labeled with3H oleic acid) were incubated either with heated rat pancreatic juice, at 37 C during periods of 1 and 3 hr, or with snake venom, at 25 C during periods of 17 and 36 hr, as sources of phospholipase A2. After incubation, tritiated free oleic acid was measured since this acid was in the 2 position of both phospholipidic substrates. With heated pancreatic juice, no significant enzymatic hydrolysis of the bile phospholipids occured, but isolated hepatic phospholipids were readily attacked. With snake venom, the whole isolated hepatic phospholipids were very strongly hydrolyzed while biliary phospholipids were hydrolyzed to a much lesser extent.  相似文献   

15.
When 5×106 hepatocytes were incubated for 40 min with from 0.15 to 0.60 mM [1-14C]linoleic acid, [1-14C]6,9,12-octadecatrienoic acid, or [1-14C]8,11,14-eicosatrienoic acid, there was a concentration-dependent acylation of radioactive metabolites into both triglycerides and phospholipids. When the concentration of either [1-14C]linoleic acid or [1-14C]8,11,14-eicosatrienoic acid exceeded 0.3 mM, there was no further increase in the metabolism of either fatty acid to other (n−6) metabolites. When the concentration of [1-14C]6,9,12-octadecatrienoic acid exceeded 0.15 mM, there was an apparent substrate-induced inhibition in its metabolism to 8,11,14-eicosatrienoic acid. With all three substrates (0.3 mM), there was time-dependent metabolism to other (n−6) acids. Cells then were incubated simultaneously with 0.3 mM [1-14C]linoleic acid along with 0.15 to 0.45 mM 6,9,12-octadecatrienoic acid or 8,11,14-eicosatrienoic acid. These exogenous nonradioactive (n−6) acids suppressed but did not abolish the conversion of [1-14C]linoleate to radioactive arachidonate. These findings suggest that some linoleate is converted to arachidonate without intracellular mixing of 6,8,12-octadecatrienoic or 8,11,14-eicosatrienoic acids. This hypothesis is supported by the finding that exogenous linoleate did not markedly affect the metabolism of [1-14C]6,9,12-octadecatrienoic or [1-14C]8,11,14-eicosatrienoic acid by microsomal chain elongating or desaturating enzymes.  相似文献   

16.
Gas chromatographic determination of the fatty acids in the seeds of soybean (Glycine max) showed mainly linoleic, oleic and palmitic acids with linoleic acid being the major component. Changes in the distribution of fatty acids were measured during germination in the cotyledons and roots. A decrease in palmitic and oleic acids was observed in the cotyledons from 6 to 12 days, while linoleic acid increased during the same period. In roots also, the major fatty acid was linoleic acid, while palmitic and linolenic acids were higher in roots in comparison with the cotyledons. During the 3–12 days of germination period, no major changes in the distribution pattern of fatty acids were observed in the roots. The possible significance of these changes is discussed.  相似文献   

17.
Inositol phospholipids from carrot cell membranes grown in suspension cultured were purified by thinlayer chromatography (TLC) or column chromatography and tentatively identified by co-migration on TLC with animal inositol phospholipid standards. For more rigorous chemical characterization, carrot inositol phospholipids were then analyzed by negative ion fast atom bombardment mass spectrometry (FABMS). One phosphatidylinositol (PI), two lysophosphatidylinositols (LPI), and one phosphatidylinositol monophosphate (PIP) were identified in the carrot samples by the observation of ions [M-H] and numerous fragment ions in the negative FAB mass spectra. MS/MS analysis were carried out to obtain further structural information of these phospholipids using a double-focusing mass spectrometer in which the magnetic sector (B) and the electrostatic analyzer (E) were scanned at a constant ratio (B/E). These B/E linked scans provided fragment ions of selected precursor ions while eliminating matrix and other contaminating ions. No molecular ions were detected for lysophosphatidylinositol monophosphate (LPIP) or phosphatidylinositol bisphosphate (PIP2), but fragment ions corresponding to these structures were observed. The primary fatty acids present in the carrot inositol phospholipids were linoleic (18∶2) and palmitic (16∶0) acids, whereas animal lipids contained arachidonic (20∶4), stearic (18∶0), linoleic, and palmitic acids. The only phosphatidylinositol found in carrot cells was palmitoyl linoleoyl PI.  相似文献   

18.
Fatty acid metabolism in developing flaxseeds was studied by incubating whole seeds or isolated seed tissues in buffered solutions of 1-14C-acetate, 2-14C-malonate and14CO2. Lipid classes were separated by thin layer chromatography, and fatty acid labeling in phospholipids, diglycerides and triglycerides was determined by combined thin layer and gas liquid chromatographic techniques. Incorporation of14C from acetate into embryo lipids was very rapid with phospholipids and 1,2-diglycerides becoming highly labeled in treatment times as short as 5 min. Triglycerides were labeled more slowly. Phospholipid radioactivity was largely associated with the phosphatidyl choline fraction. Oleic acid had the highest specific activity of all major fatty acids in short treatment periods. This was followed in decreasing order of activity by palmitic, linoleic, stearic and linolenic acids. As the treatment period was lengthened to 90 min or longer, linoleic and linolenic activities were markedly increased. Use of malonate or CO2 rather than acetate as the substrate increased the labeling of the saturated acids. Incorporation of14C from acetate into lipids of endosperm tissues and whole flax seeds was slower than incorporation into embryo lipids. Stearate had the highest specific activity of the fatty acids in endosperm and whole seeds. Presented in part at the AOCS Meeting in New York, October 1968.  相似文献   

19.
Near-infrared reflectance spectroscopy (NIRS) was used to estimate the fatty acid composition of the oil in intact-seed samples of Ethiopian mustard (Brassica carinata Braun) within a mutation breeding program that produced seeds with variable fatty acid compositions. Five populations, from 1992 to 1996 crops, were included in this study; and NIRS calibration equations for major fatty acids (palmitic, stearic, oleic, linoleic, linolenic, eicosenoic, and erucic) were developed within each single population. Furthermore, global calibration equations, including samples from the five populations, were developed. After external validation, the NIRS technique permitted us to obtain a reliable and accurate nondestructive estimation of the fatty acid composition of the oil, especially for the major acids—oleic, linoleic, linolenic, and erucic. For these, the r 2 in external validation was higher than 0.95 by using both single-and multipopulation equations, and higher than 0.85 for the remaining fatty acids. Moreover, the multipopulation equations provided an accurate estimation of samples from a population not represented in the calibration data set, with values of coefficient of determination in validation (r 2) from 0.80 (palmitic and eicosenoic acids) to 0.97 (erucic acid). The ability of NIRS to discriminate among different fatty acid profiles was mainly due to changes within six spectral regions, 1140–1240, 1350–1400, 1650–1800, 1880–1920, 2140–2200, and 2240–2380 nm, all of them associated with fatty acid absorbers. Thus, NIRS can be used to estimate the fatty acid composition of Ethiopian mustard seeds with a high degree of accuracy, provided that calibration equations be developed from calibration sets that include large variability for the fatty acid composition of the oil.  相似文献   

20.
Jen-sie Tou 《Lipids》1989,24(9):812-817
This study extended the earlier finding that platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) promotes arachidonic acid incorporation into neutrophil phosphatidylinositol (PI) and phosphatidylcholine (PC). In the present study the effect of PAF on fatty acid uptake by human neutrophils and the incorporation of extracellular linoleic acid and palmitic acid into phospholipids were investigated. Incubation of 10−7 M PAF with neutrophils and radiolabeled arachidonic acid or linoleic acid or palmitic acid for 1–10 min resulted in an increased rate of loss of label from the incubation medium. PAF stimulated the incorporation of linoleic acid and palmitic acid most significantly into PI and PC. The magnitude of stimulation was greater in PI than in PC for the incorporation of linoleic acid, and vice versa for the incorporation of palmitic acid. The positional distribution of linoleic acid and palmitic acid in PI and PC and the mass of these phospholipids were not altered in PAF-stimulated neutrophils. An increased incorporation of all three fatty acids into both diacyl and alkylacyl species of PC was demonstrated after a two minute incubation of cells with PAF. While more radioactivity was recovered in the diacyl species, the magnitude of increase of radioactivity in the alkylacyl species was more pronounced than that in the diacyl species of PC. These results suggest that both increased fatty acid uptake and increased available lysophospholipids may be contributory to the increased phospholipid acylation induced by PAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号