首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
考虑颗粒滑动的半持续性接触应力和颗粒碰撞瞬时接触应力对颗粒相应力的贡献,建立了喷动床内气体颗粒两相流动计算模型。采用颗粒动理学和Johnson 等的摩擦应力模型,数值模拟喷动床颗粒流动过程,获得了喷动床喷射区、环隙区和喷泉区内颗粒流动特性。模拟计算与He等的实验结果进行了对比。同时分析了摩擦应力模型对颗粒相黏度变化的影响,表明中速颗粒流的颗粒相摩擦应力模型将直接影响喷动床气体颗粒两相流动的预测。  相似文献   

2.
为了深入了解纵向涡流对喷动床内气固两相流动特性的影响规律,采用计算流体力学方法对喷动床内气固两相流动的纵向涡流效应进行三维数值模拟。采用RUC曳力系数模型描述气、固相间作用力,通过欧拉-欧拉双流体模型和颗粒动力学理论对气固两相流动进行模型处理。分别对无扰流件、加入一对小球扰流件及加入一对纵向涡流发生器喷动床结构进行了模拟分析及对比。研究表明:加入球体扰流件及纵向涡流发生器之后,喷泉区的喷动高度明显下降,并在球形扰流件及纵向涡流发生器附近产生了二次漩涡。纵向涡流的存在显著地增加了喷动床内环隙区颗粒相的径向速度,增加了喷射区及喷泉区内颗粒体积分数及其密集度,有效增强了喷动床内气体、颗粒沿径向与轴向的湍动能及拟温度值,进而强化了环隙区与喷射区内颗粒、流体两相的横向混合效果及颗粒间的动量交换过程。  相似文献   

3.
应用气固二相双流体模型数值模拟了喷动床内流体动力行为,模型中采用稠密固相动力-摩擦应力模型。模型中同时考虑了动理学理论和摩擦应力理论。应用贴体坐标系使得网格与喷动床的倒锥体边界符合良好。模拟得到的喷动床内颗粒速度和浓度实验数据吻合较好。  相似文献   

4.
《化学工程》2013,(10):45-49
将应用欧拉双流体模型对鼓泡气化炉内的气化过程进行研究。摒弃传统颗粒动理学理论中颗粒光滑无旋转的假设,引入颗粒的旋转运动,构建粗糙颗粒动理学理论来封闭双流体模型。基于燃烧理论建立粉煤热解、气化模型以及鼓泡床内气固之间以及气体和气体之间的传热、传质模型。采用该模型进行数值模拟计算,分析床内的气固反应过程,对比实验结果表明粗糙颗粒动理学理论适用于模拟鼓泡床气化炉内的反应。  相似文献   

5.
赵永志  程易  金涌 《化学工程》2007,35(6):24-28
采用离散单元法(DEM)-计算流体力学(CFD)双向耦合数值方法对二维导流管喷动床进行了模拟,颗粒的运动通过DEM模型描述,而气体的运动用Navier-Stokes方程进行求解,气体和固体颗粒之间的相互作用通过曳力形式传递。文中将DEM和边界元方法(BEM)结合起来解决颗粒在具有复杂边界设备内的运动。通过采用BEM+DEM-CFD相结合的方法进行模拟计算,得到了喷动床的最小喷动速度,研究了不同表观气速下床内的流型,得到了二维导流管喷动床的床层压降与表观气速的关系,统计分析了喷射区、环隙区内颗粒的运动速度和相应的空隙率,全面地描述了二维导流管喷动床内的气固流动特征。  相似文献   

6.
为了研究喷嘴进口气体旋流效应对喷动床内气固两相流动特性的影响规律,采用数值模拟方法进行研究分析。通过欧拉-欧拉双流体模型和颗粒动力学理论对气固两相流动进行模型处理,分别对常规喷动床及带旋流器喷嘴喷动床进行模拟分析与对比。研究表明:喷嘴进口气体旋流效应显著地强化了喷动床内颗粒的径向运动,能有效消除柱锥区的颗粒堆积现象,扩大了低床层区气体喷射区的影响范围,增加了喷动床内气体的湍动能值,从而提高喷动床内颗粒处理的整体效率。存在最佳η(旋流器内径与外径比值)值,即η为0.526时,旋流气体对喷动床环隙区内颗粒堆积的消除作用及气体湍动能值的提升最为显著,同时旋流器喷动床的总体压降达到了峰值。  相似文献   

7.
采用双流体模型(TFM)对一种新型整体式多喷嘴喷动-流化床内气固两相流动进行了数值模拟,在喷动床锥体两侧开若干侧喷嘴形成辅助多喷嘴结构,使其在喷动床锥体处产生喷动-流化效果,从而对环隙区锥体边界处堆积颗粒层产生扰流作用。通过CFD数值模拟获得了喷动床内颗粒速度及浓度的分布情况,并与单喷嘴喷动床模拟结果进行对比。研究并优化分析了不同侧喷嘴数量以及侧喷嘴宽度等关键参数对喷动床气固两相流动的影响规律。研究表明,与常规喷动床相比,整体式多喷嘴喷动-流化床结构能有效增强喷动床内环隙区颗粒相运动,特别是强化了喷动床环隙区底部流动死区的颗粒运动,使得锥体边界层颗的粒体积分数显著下降,颗粒体积分数沿径向分布变得更为均匀,同时省略了旁路供气辅助设备。  相似文献   

8.
王洪远  纪律  孟繁旭  李斌  杨建蒙  陈海生 《化工学报》2021,72(11):5563-5572
基于Fortran语言自行开发了基于动态双重网格方法下的喷动床内气固两相流动的CFD-DEM方法,同时开展了喷动床内径向混合实验与模拟研究,又结合单网格方法对喷动床内0~2.0 s内的滞止区特性进行对比分析,验证了动态双网格方法计算结果的准确性。然后利用动态双网格方法对不同进口气速下和不同初始堆积高度下的喷动床进行数值模拟研究,对滞止区颗粒流动过程进行追踪,结果表明:径向混合实验结果与数值模拟结果有很好一致性;在喷动床内存在一定的滞止区,滞止区内的颗粒流动性较差;初始堆积高度不变,随着进口速度的增加,滞止区高度下降速率和向喷口延伸速度无明显变化;进口速度不变,随着初始堆积高度的增加,滞止区颗粒下降速度随之增加,但其向喷口延伸速度逐渐变慢。  相似文献   

9.
带导流管的矩形喷动床是传统喷动床的改进型式,矩形床内设置的与床同厚的垂直导流管,可以控制固体颗粒的内循环速率,同时使下行区中的气固移动床维持平推流.本文实验测定了不同表观气速、床层重量、不同固体颗粒与气体入口形式与尺寸时,矩形导流管喷动床下行区的床层压降,以考察其流动特征.实验结果表明,下行区存在床层压降的轴向分布,气固流动处于负压差下移上流区,且气固滑移速度自下而上是逐渐下降的.下行区颗粒床层的压降以及颗粒的移动下输,受到喷动床表观气速、床高、喷嘴尺寸、物料种类和颗粒直径的不同影响.  相似文献   

10.
喷动床反应器气固流动模型的研究进展   总被引:3,自引:0,他引:3  
首先对喷动床流动特征参数关联式进行了扼要介绍,继而着重总结了近年来喷动床内气固流动模型(喷射区气固稀相流模式、环隙区气体渗流模式以及固体颗粒流模式)、以及喷动床放大规律等基础理论研究的进展。最后,提出了未来喷动床流动模型工作的突破点和相应思路。  相似文献   

11.
Flow behavior of gas and particles is simulated in the spouted beds using a Eulerian-Eulerian two-fluid model on the basis of kinetic theory of granular flow. The kinetic-frictional constitutive model for dense assemblies of solids is incorporated. The kinetic stress is modeled using the kinetic theory of granular flow, while the friction stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson (1987) and the frictional shear viscosity model proposed by Schaeffer (1987) to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. An inverse tangent function is used to provide a smooth transitioning from the plastic and viscous regimes. The distributions of concentration, velocity and granular temperature of particles are obtained in the spouted bed. Calculated particle velocities and concentrations in spouted beds are in agreement with the experimental data obtained by He et al. (1994a, b). Simulated results indicate that flow behavior of particles is affected by the concentration of the transition point in spouted beds.  相似文献   

12.
The gas‐solid flow in a cylindrical spouted bed with a pair of spherical longitudinal vortex generators (LVGs) was numerically investigated by a two‐fluid model with kinetic theory for granular flow. Simulations and analyses were conducted on five types of spouted beds: a conventional spouted bed without disturbance units as well as spouted beds with a pair of LVGs in which the radius of spheres installed on the LVGs had four different dimensions. Results of the computational fluid dynamics demonstrate that the fountain height decreases with larger radius, and the influence range of the longitudinal vortex increases with the greater radius, both for the gas phase and particle phase. The turbulent kinetic energy of the gas phase along the radial and axial directions in the spouted bed was also promoted significantly by the longitudinal vortex and increased with larger radius, which is due to the higher LVG volume.  相似文献   

13.
A multi-fluid Eulerian model has been improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model was implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. Simulations without and with particle rotation were performed to study the bubble dynamics and bed expansion in a monodispersed bubbling gas-fluidized bed and the segregation phenomena in a bidispersed bubbling gas-fluidized bed. Results were compared between simulations without and with particle rotation and with corresponding experimental results. It was found that the multi-fluid model with particle rotation better captures the bubble dynamics and time-averaged bed behavior. The model predictions of segregation percentages agreed with experimental data in the fluidization regime where kinetic theory is valid to describe segregation and mixing.  相似文献   

14.
The flow behavior of gas and ultrafine powder in a spouted bed was numerically investigated by using a two‐fluid model coupled with a population balance equation (PBE). The aggregation process is controlled by the PBE, which is solved by the direct quadrature method of moments. The agglomerate diameter is calculated according to the change in particle number. The solid pressure and viscosity were modified for agglomerates on the basis of the kinetic theory of granular flow. Distributions of diameter, solids volume fraction, and velocity are obtained by the new model. The influence of cohesive intensity and gas velocity on the diameter distribution were analyzed. The spout diameter, a vital parameter for the design of spouted beds, was calculated and a calculation formula is proposed.  相似文献   

15.
Flow behavior of gas and particles is simulated in the spouted beds using an Eulerian–Eulerian two-fluid model on the basis of kinetic theory of granular flow. The kinetic–frictional constitutive model for dense assemblies of solids is incorporated. The kinetic interaction of particle collisions is modeled by means of a second-order moment method, while the frictional stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson (1987) and the frictional shear viscosity model proposed by Schaeffer (1987) to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. The distributions of concentration, velocity, second-order moments and granular temperature of particles are obtained in the spouted bed. Calculated particle velocities, concentrations and spout diameter in a spouted bed are in agreement with experimental data obtained by He et al., 1994a, He et al., 1994b. Simulated results indicate that the second-order moment component in the axial direction is higher that the second-order moment component in the lateral direction in both the spout and the fountain. In the annulus, the values of second-order moments are very small. The simulated mean value of the ratio of the normal second-order moment in the axial direction to the normal second-order moment in the lateral direction is in the range of 2.5–3.2 in the spout and the annulus. The bubblelike normal Reynolds stresses per unit bulk density is predicted from the simulated velocity of particles. The predicted bubblelike Reynolds stresses are very low in spouted bed. The values of the normal second-order moments are on the average three magnitudes in order larger than that of the bubblelike Reynolds stresses per unit bulk density in a spouted bed.  相似文献   

16.
Flowbehavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow. The bed pressure drop and fountain height are measured in a conical spouted bed of 100mmI.D. at different gas velocities. The simulation results are compared with measurements of bed pressure drop and fountain height. The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls. It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data. The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.  相似文献   

17.
Flow behavior of particles in a two-dimensional spouted bed with a draft tube is studied using a continuous kinetic-friction stresses model. The kinetic stress of particles is predicted from kinetic theory of granular flow, while the friction stress is computed from a model proposed by Johnson et al. (1990). A stitching function is used to smooth from the rapid shearing viscous regime to the slow shearing plastic regime. The distributions of concentration and velocities of particles are predicted in the spouted bed with a draft tube. Simulated results compare with the vertical velocity of particles (Zhao et al., 2008) measured and in the spout bed with draft plates and solid circulation rate (Ishikura et al., 2003) measured in the spouted bed with a draft tube. The impact of the friction stress of particles on the spout, annulus, fountain and entrancement regions is analyzed in gas–solid spouted bed with a draft tube. Numerical results show that the gas flow rate through the annulus increases with the increase of the entrainment zone. The solids circulation rate decreases with the decrease of inlet gas velocity and the height of the entrainment zone. The effect of spouting gas velocity on distributions of concentration, velocity and particle circulation is discussed.  相似文献   

18.
提升管内气固流动行为的数值模拟   总被引:3,自引:0,他引:3  
应用计算流体力学软件Fluent,对空气为连续相、固相为催化裂化反应催化剂的循环流化床提升管内的气固流动行为进行模拟。采用用户自定义函数引入颗粒与壁面的恢复系数和颗粒的镜面反射系数,对颗粒在边壁处的部分滑移运动进行描述。采用不同的计算动力学模型及参数,数值模拟了径向颗粒浓度、轴向床层压降的空间分布,以及用以描述颗粒脉动动能的颗粒温度与固含率的关系,并与文献报道的实验和数值模拟结果进行对比分析。结果表明,选取的颗粒动力学理论模型及参数、颗粒部分滑移边界条件及气固曳力模型,可计算得到合理的颗粒轴向及径向分布,验证了提升管中存在典型的径向环核流动结构和轴向压降分布。进一步分析表明固含率显著影响颗粒温度,当固含率为0.05~0.1,颗粒温度存在转折区。  相似文献   

19.
A multi-fluid Eulerian–Eulerian approach incorporating the kinetic theory of granular flow was used to simulate a spouted bed containing non-porous draft tube. Drag function and coefficient of restitution were investigated. Solid and gas velocity vector, gas flow rate in annulus and spout regions and longitudinal pressure distribution were evaluated. In addition, the effects of the entrainment height and the draft tube diameter were studied. Simulation indicates the formation of three regions namely, annulus, spout and fountain; similar to a conventional spouted bed. Current model predicts acceptable results in both spout and annulus regions. Simulation results indicate that the model can be employed for both mono-size and multi-size particles reasonably. This paper provides useful basis for further works on understanding gas–solid flow mechanism in spouted beds containing a non-porous draft tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号