共查询到20条相似文献,搜索用时 15 毫秒
1.
The re-entry problem consists of guidance design and trajectory control. This paper summarizes the detailed relationships
between the velocity, drag acceleration and altitude in determining reference trajectories. The computational issues are also
addressed, and the performance of the proposed simple nonlinear control of a bank angle for the longitudinal/lateral trajectory
is demonstrated. In particular, the fixed bank angle methods that can reduce the drag acceleration errors at low-speeds are
proposed. The importance of bank reversals with respect to the azimuth errors is also elucidated. 相似文献
2.
基于视觉的自主车辆导航与控制技术的进展 总被引:3,自引:0,他引:3
视觉系统在导航控制中起着环境探测和辨识的作用。从导航数据采集、道路识别和运动控制三个方面分析计算机视觉在自主车辆导航与控制中的应用,并评述其实用性。 相似文献
3.
The heavy equipment industry is building more and more equipment with electro-hydraulic control systems. The existing industry practices for the design of control systems in construction machines primarily rely on classical designs coupled with ad-hoc synthesis procedures. Such practices produce desirable results, but lack a systematic procedure to account for invariably present plant uncertainties in the design process as well as coupled dynamics of the multi-input multi-output (MIMO) configuration. In this paper, two H∞ based robust control designs are presented for an automatic bucket leveling mechanism of a wheel loader. In one case, the controller is designed for the base plant model. In another case, the controller is designed for the plant with a feedback linearization control law applied yielding improved stability robustness. A MIMO nonlinear model for an electro-hydraulically actuated wheel loader linkage is considered. The robustness of the controller designs are validated by using analysis and by simulation using a complete nonlinear model of the wheel loader linkage and hydraulic system. 相似文献
4.
在对某一托吊分离式重型清障车吊臂结构设计的基础上,利用ANSYS软件对一定滑块尺寸的设计结构进行静力分析,对局部强度不足部位提出了改进措施。以滑块的长度尺寸和宽度尺寸为参数,以吊臂与滑块接触部位的最大应力满足强度要求为约束条件,应用ANSYS软件中提供的参数化设计语言(APDL)对滑块的结构尺寸进行参数化建模与求解。得到了滑块两个几何尺寸单独变化和联合变化时对应的应力变化曲线,找到了如何通过增大滑块尺寸来减少吊臂接触部位应力的最有效办法。 相似文献
5.
6.
针对汽车线控主动转向行驶稳定性问题,对汽车线控主动转向的控制策略和控制方法进行了研究;并对汽车的动力学模型进行了建立及简化;利用遗传算法可以克服BP网络收敛速度慢和极易陷入局部极小值等特点,提出了一种基于遗传算法优化BP神经网络的线控转向系统。通过选择典型工况,利用Carsim和Matlab/Simulink联合仿真平台对不同的控制方法进行了仿真验证。研究结果表明,基于遗传算法优化的BP网络控制对汽车主动转向控制效果较好,能使实际横摆角速度对理想的横摆角速度实现很好的跟踪,并显著提高了汽车行驶稳定性。 相似文献
7.
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. 相似文献
8.
《ISA transactions》2014,53(6):1771-1786
This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. 相似文献
9.
对辅助混合动力汽车进行了技术研究,详细介绍了其系统构成和三种工作模式.为了实现辅助动力系统和整车高效运转,开发了辅助动力控制系统,重点介绍了辅助动力控制系统的控制策略和功能实现.辅助动力系统采用开关式控制策略,发动机采用恒转速控制.最后实验结果表明辅助动力系统可以实现对车载能源的高效补充,混合驱动模式下行驶里程比纯电动模式提高约10%. 相似文献
10.
11.
A mathematical model and control laws for an Electronic-Vacuum Booster (EVB) For application to vehicle cruise control will
be presented. Also this paper includes performance test result of EVB and vehicle cruise control experiments. The pressure
difference between the vacuum chamber and the apply chamber is controlled by a PWM-solenoid-valve. Since the pressure at the
vacuum chamber is identical to that of the engine intake manifold, the output of the electronic-vacuum booster is sensitive
to engine speed. The performance characteristics of the electronic-vacuum booster have been investigated via computer simulations
and vehicle tests. The mathematical model of the electronic-vacuum booster developed in this study and a two-state dynamic
engine model have been used in the simulations. It has been shown by simulations and vehicle tests that the EVB-cruise control
system can provide a vehicle with good distance control performance in both high speed and low speed stop and go driving situations. 相似文献
12.
基于滑模变结构控制的车辆稳定性研究 总被引:1,自引:0,他引:1
直接横摆力矩控制(Direct Yaw Moment Control,DYC)能在极限工况下产生维持车辆稳定行驶所需的附加横摆力矩,从而提高车辆的主动安全性能。采用"Dugoff"轮胎模型,运用MATLAB/SIMULINK软件建立了十六自由度非线性车辆模型和二自由度参考模型,基于滑模变结构控制理论,分别设计了以横摆角速度为控制变量的DYC控制器和以质心侧偏角为控制变量的DYC控制器,并在极限工况下进行仿真。仿真结果表明:所设计的控制器能有效控制车辆的横摆角速度和质心侧偏角,提高了车辆的操纵稳定性。 相似文献
13.
14.
Feedback linearization based control of a variable air volume air conditioning system for cooling applications 总被引:1,自引:0,他引:1
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established. 相似文献
15.
The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned. 相似文献
16.
The robust stability of a class of feedback linearizable minimum-phase nonlinear system, having parametric uncertainties, is investigated in this study. The system in new coordinates is represented to an equivalent formulation after the attempt of feedback linearization. Due to the parametric uncertainties the approximately linearized system entails a norm bounded input nonlinearity such that the equilibrium point condition in error dynamics can not be satisfied. Accordingly, to guarantee the regional asymptotic stability a control synthesis problem is proposed by means of sufficient Linear Matrix Inequalities (LMIs) together with an amended nonlinear control term, derived from the Lyapunov redesign method, which tackles zero steady-state error condition. The numerical examples of a general aviation aircraft's longitudinal dynamics and inverted pendulum are simulated to show the proficiency of the proposed control technique. 相似文献
17.
Adaptive control and stability analysis of nonlinear crane systems with perturbation 总被引:1,自引:0,他引:1
This paper presents an adaptive control approach using a model matching technique for 3-DOF nonlinear crane systems. The proposed
control is linearly composed of two control frameworks: nominal PD control and corrective control. A nonlinear crane model
is approximated by means of feedback linearization to design nominal PD control avoiding perturbation. We propose corrective
control to compensate system error feasibly occurring due to perturbation, which is derived by using Lyapunov stability theory
with bound of perturbation. Additionally, we achieve stability analysis for the proposed crane control system and analytically
derive sufficient stability condition with respect to its perturbation. Numerical simulation is accomplished to evaluate our
proposed control and demonstrate its reliability and superiority compared to traditional control method. 相似文献
18.
为改进车载网关在实际应用中的实时性能,减少网关延时,将主从节点调度方法引入车载CAN的网关调度中。分析了影响车载CAN网关实时性的因素,根据车载CAN网关的信号路由、报文调度方式和网络负载对网关传输延时的影响,设计了一种基于信号更新位的改进型CAN网络主从节点调度算法;通过使用实际网关硬件和TELLUS汽车网络仿真工具构建了实验平台,并对该调度算法进行了评价。研究结果表明,采用该改进型主从节点调度算法的网关延时最多可以比传统调度方式减少4.6%,可提高车载CAN网关的实时性能。 相似文献
19.
In order to solve the problem of enhancing the vehicle driving stability and safety,which has been the hot question researched by scientific and engineering in the vehicle industry,the new control method was investigated.After the analysis of tire moving characteristics and the vehicle stress analysis,the tire model based on the extension pacejka magic formula which combined longitudinal motion and lateral motion was developed and a nonlinear vehicle dynamical stability model with seven freedoms was made.A new model reference adaptive control project which made the slip angle and yaw rate of vehicle body as the output and feedback variable in adjusting the torque of vehicle body to control the vehicle stability was designed.A simulation model was also built in Matlab/Simulink to evaluate this control project.It was made up of many mathematical subsystem models mainly including the tire model module,the yaw moment calculation module,the center of mass parameter calculation module,tire parameter calculation module of multiple and so forth.The severe lane change simulation result shows that this vehicle model and the model reference adaptive control method have an excellent performance. 相似文献
20.
Design and optimization for the occupant restraint system of vehicle based on a single freedom model
Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand,the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper. 相似文献