共查询到20条相似文献,搜索用时 0 毫秒
1.
This article presents a combination of unsupervised and supervised learning techniques for the generation of word segmentation rules from a raw list of words. First, a language bias for word segmentation is introduced and a simple genetic algorithm is used in the search for a segmentation that corresponds to the best bias value. In the second phase, the words segmented by the genetic algorithm are used as an input for the first order decision list learner CLOG. The result is a set of first order rules which can be used for segmentation of unseen words. When applied on either the training data or unseen data, these rules produce segmentations which are linguistically meaningful, and to a large degree conforming to the annotation provided. 相似文献
2.
3.
Inductive logic programming (ILP) algorithms are classification algorithms that construct classifiers represented as logic programs. ILP algorithms have a number of attractive features, notably the ability to make use of declarative background (user-supplied) knowledge. However, ILP algorithms deal poorly with large data sets (>104 examples) and their widespread use of the greedy set-covering algorithm renders them susceptible to local maxima in the space of logic programs.This paper presents a novel approach to address these problems based on combining the local search properties of an inductive logic programming algorithm with the global search properties of an evolutionary algorithm. The proposed algorithm may be viewed as an evolutionary wrapper around a population of ILP algorithms.The evolutionary wrapper approach is evaluated on two domains. The chess-endgame (KRK) problem is an artificial domain that is a widely used benchmark in inductive logic programming, and Part-of-Speech Tagging is a real-world problem from the field of Natural Language Processing. In the latter domain, data originates from excerpts of the Wall Street Journal. Results indicate that significant improvements in predictive accuracy can be achieved over a conventional ILP approach when data is plentiful and noisy. 相似文献
4.
Hendrik Blockeel Luc De Raedt Nico Jacobs Bart Demoen 《Data mining and knowledge discovery》1999,3(1):59-93
When comparing inductive logic programming (ILP) and attribute-value learning techniques, there is a trade-off between expressive power and efficiency. Inductive logic programming techniques are typically more expressive but also less efficient. Therefore, the data sets handled by current inductive logic programming systems are small according to general standards within the data mining community. The main source of inefficiency lies in the assumption that several examples may be related to each other, so they cannot be handled independently.Within the learning from interpretations framework for inductive logic programming this assumption is unnecessary, which allows to scale up existing ILP algorithms. In this paper we explain this learning setting in the context of relational databases. We relate the setting to propositional data mining and to the classical ILP setting, and show that learning from interpretations corresponds to learning from multiple relations and thus extends the expressiveness of propositional learning, while maintaining its efficiency to a large extent (which is not the case in the classical ILP setting).As a case study, we present two alternative implementations of the ILP system TILDE (Top-down Induction of Logical DEcision trees): TILDEclassic, which loads all data in main memory, and TILDELDS, which loads the examples one by one. We experimentally compare the implementations, showing TILDELDS can handle large data sets (in the order of 100,000 examples or 100 MB) and indeed scales up linearly in the number of examples. 相似文献
5.
6.
This paper presents a case study of a machine-aided knowledge discovery process within the general area of drug design. Within drug design, the particular problem of pharmacophore discovery is isolated, and the Inductive Logic Programming (ILP) system progol is applied to the problem of identifying potential pharmacophores for ACE inhibition. The case study reported in this paper supports four general lessons for machine learning and knowledge discovery, as well as more specific lessons for pharmacophore discovery, for Inductive Logic Programming, and for ACE inhibition. The general lessons for machine learning and knowledge discovery are as follows.1. An initial rediscovery step is a useful tool when approaching a new application domain.2. General machine learning heuristics may fail to match the details of an application domain, but it may be possible to successfully apply a heuristic-based algorithm in spite of the mismatch.3. A complete search for all plausible hypotheses can provide useful information to a user, although experimentation may be required to choose between competing hypotheses.4. A declarative knowledge representation facilitates the development and debugging of background knowledge in collaboration with a domain expert, as well as the communication of final results. 相似文献
7.
Mathieu Serrurier Henri Prade 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2007,11(5):459-466
Introducing fuzzy predicates in inductive logic programming may serve two different purposes: allowing for more adaptability
when learning classical rules or getting more expressivity by learning fuzzy rules. This latter concern is the topic of this
paper. Indeed, introducing fuzzy predicates in the antecedent and in the consequent of rules may convey different non-classical
meanings. The paper focuses on the learning of gradual and certainty rules, which have an increased expressive power and have
no simple crisp counterpart. The benefit and the application domain of each kind of rules are discussed. Appropriate confidence
degrees for each type of rules are introduced. These confidence degrees play a major role in the adaptation of the classical
FOIL inductive logic programming algorithm to the induction of fuzzy rules for guiding the learning process. The method is
illustrated on a benchmark example and a case-study database. 相似文献
8.
9.
采用遗传算法(GA)作为归纳逻辑程序设计(ILP)的搜索策略,可以提高ILP方法的鲁棒性和适应性,文章简要叙述了对作者提出的遗传归纳逻辑程序设计(GILP)算法作的改进,测试了选择策略对GILP算法收敛性能的影响,采用不同的选择策略不会影响算法的最终收敛结果,但会产生不同的选择压力,导致算法具有不同的收敛速率。 相似文献
10.
This paper is a survey of some recentconnectionist approaches to the design and developmentof behaviour-based mobile robots. The research isanalysed in terms of principal connectionist learningmethods and neurological modeling trends. Possibleadvantages over conventionally programmed methods areconsidered and the connectionist achievements to dateare assessed. A realistic view is taken of theprospects for medium term progress and someobservations are made concerning the direction thismight profitably take. 相似文献
11.
支持向量机理论与基于规划的神经网络学习算法 总被引:19,自引:3,他引:19
近年来支持向量机(SVM)理论得到国外学者高度的重视,普遍认为这是神经网络学习的新研究方向,近来也开始得到国内学者的注意。该文将研究SVM理论与神经网络的规划算法的关系,首先指出,Vapnik的基于SVM的算法与该文作者1994年提出的神经网络的基于规划的算法是等价的,即在样本集是线性可分的情况下,二者求得的均是最大边缘(maximal margin)解。不同的是,前者(通常用拉格郎日乘子法)求解的复杂性将随规模呈指数增长,而后者的复杂性是规模的多项式函数。其次,作者将规划算法化为求一点到某一凸集上的投影,利用这个几何的直观,给出一个构造性的迭代求解算法--“单纯形迭代算法”。新算法有很强的几何直观性,这个直观性将加深对神经网络(线性可分情况下)学习的理解,并由此导出一个样本集是线性可分的充分必要条件。另外,新算法对知识扩充问题,给出一个非常方便的增量学习算法。最后指出,“将一些必须满足的条件,化成问题的约束条件,将网络的某一性能,作为目标函数,将网络的学习问题化为某种规划问题来求解”的原则,将是研究神经网络学习问题的一个十分有效的办法。 相似文献
12.
遗传归纳逻辑程序设计的个体编码生长现象 总被引:3,自引:0,他引:3
遗传归纳逻辑程序设计(GILP)的个体编码生长现象严重影响了算法的性能和规则的可读性.通过对变长编码的模式分析,解释了GILP的个体编码生长现象.并发现,若从初始种群开始添加长度惩罚项来解决个体编码生长问题,种群会出现退化现象.而采取在演化的初期不添加惩罚项,在种群的性状有了明显改善后再添加惩罚的策略,既可避免种群退化,又可有效解决个体编码生长问题. 相似文献
13.
14.
The problem of learning universally quantified function free first order Horn expressions is studied. Several models of learning from equivalence and membership queries are considered, including the model where interpretations are examples (Learning from Interpretations), the model where clauses are examples (Learning from Entailment), models where extensional or intentional background knowledge is given to the learner (as done in Inductive Logic Programming), and the model where the reasoning performance of the learner rather than identification is of interest (Learning to Reason). We present learning algorithms for all these tasks for the class of universally quantified function free Horn expressions. The algorithms are polynomial in the number of predicate symbols in the language and the number of clauses in the target Horn expression but exponential in the arity of predicates and the number of universally quantified variables. We also provide lower bounds for these tasks by way of characterising the VC-dimension of this class of expressions. The exponential dependence on the number of variables is the main gap between the lower and upper bounds. 相似文献
15.
16.
We discuss the adoption of a three-valued setting for inductive concept learning. Distinguishing between what is true, what is false and what is unknown can be useful in situations where decisions have to be taken on the basis of scarce, ambiguous, or downright contradictory information. In a three-valued setting, we learn a definition for both the target concept and its opposite, considering positive and negative examples as instances of two disjoint classes. To this purpose, we adopt Extended Logic Programs (ELP) under a Well-Founded Semantics with explicit negation (WFSX) as the representation formalism for learning, and show how ELPs can be used to specify combinations of strategies in a declarative way also coping with contradiction and exceptions.Explicit negation is used to represent the opposite concept, while default negation is used to ensure consistency and to handle exceptions to general rules. Exceptions are represented by examples covered by the definition for a concept that belong to the training set for the opposite concept.Standard Inductive Logic Programming techniques are employed to learn the concept and its opposite. Depending on the adopted technique, we can learn the most general or the least general definition. Thus, four epistemological varieties occur, resulting from the combination of most general and least general solutions for the positive and negative concept. We discuss the factors that should be taken into account when choosing and strategically combining the generality levels for positive and negative concepts.In the paper, we also handle the issue of strategic combination of possibly contradictory learnt definitions of a predicate and its explicit negation.All in all, we show that extended logic programs under well-founded semantics with explicit negation add expressivity to learning tasks, and allow the tackling of a number of representation and strategic issues in a principled way.Our techniques have been implemented and examples run on a state-of-the-art logic programming system with tabling which implements WFSX. 相似文献
17.
Inductive logic programming for gene regulation prediction 总被引:1,自引:0,他引:1
We present a systems biology application of ILP, where the goal is to predict the regulation of a gene under a certain condition from binding site information, the state of regulators, and additional information. In the experiments, the boosted Tilde model is on par with the original model by Middendorf et al. based on alternating decision trees (ADTrees), given the same information. Adding functional categorizations and protein-protein interactions, however, it is possible to improve the performance substantially. We believe that decoding the regulation mechanisms of genes is an exciting new application of learning in logic, requiring data integration from various sources and potentially contributing to a better understanding on a system level. Editors: Stephen Muggleton, Ramon Otero, Simon Colton. 相似文献
18.
19.
In this paper we initiate an investigation of generalizations of the Probably Approximately Correct (PAC) learning model that attempt to significantly weaken the target function assumptions. The ultimate goal in this direction is informally termed agnostic learning, in which we make virtually no assumptions on the target function. The name derives from the fact that as designers of learning algorithms, we give up the belief that Nature (as represented by the target function) has a simple or succinct explanation. We give a number of positive and negative results that provide an initial outline of the possibilities for agnostic learning. Our results include hardness results for the most obvious generalization of the PAC model to an agnostic setting, an efficient and general agnostic learning method based on dynamic programming, relationships between loss functions for agnostic learning, and an algorithm for a learning problem that involves hidden variables. 相似文献
20.
José Júlio Alferes Luís Moniz Pereira Teodor C. Przymusinski 《Journal of Automated Reasoning》1998,20(1-2):107-142
Gelfond and Lifschitz were the first to point out the need for a symmetric negation in logic programming and they also proposed a specific semantics for such negation for logic programs with the stable semantics, which they called 'classical'. Subsequently, several researchers proposed different, often incompatible, forms of symmetric negation for various semantics of logic programs and deductive databases. To the best of our knowledge, however, no systematic study of symmetric negation in non-monotonic reasoning was ever attempted in the past. In this paper we conduct such a systematic study of symmetric negation. We introduce and discuss two natural, yet different, definitions of symmetric negation: one is called strong negation and the other is called explicit negation. For logic programs with the stable semantics, both symmetric negations coincide with Gelfond–Lifschitz' 'classical negation'. We study properties of strong and explicit negation and their mutual relationship as well as their relationship to default negation 'not', and classical negation '¬'. We show how one can use symmetric negation to provide natural solutions to various knowledge representation problems, such as theory and interpretation update, and belief revision. Rather than to limit our discussion to some narrow class of nonmonotonic theories, such as the class of logic programs with some specific semantics, we conduct our study so that it is applicable to a broad class of non-monotonic formalisms. In order to achieve the desired level of generality, we define the notion of symmetric negation in the knowledge representation framework of AutoEpistemic logic of Beliefs, introduced by Przymusinski. 相似文献