首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To assess the effects of short-term antecedent hypoglycemia on responses to further hypoglycemia 2 days later in patients with IDDM. RESEARCH DESIGN AND METHODS: We studied eight type I diabetic patients without hypoglycemia unawareness or autonomic neuropathy during two periods at least 4 weeks apart. On day 1, 2 h of either clamped hyperinsulinemic (60 mU.m-2.min-1) hypoglycemia at 2.8 mmol/l or euglycemia at 5.0 mmol/l were induced. Hyperinsulinemic hypoglycemia was induced 2 days later with 40 min glucose steps of 5.0, 4.0, 3.5, 3.0, and 2.5 mmol/l. Catecholamine levels and symptomatic and physiological responses were measured every 10-20 min. RESULTS: When compared with the responses measured following euglycemia, the responses of norepinephrine 2 days after hypoglycemia were reduced (peak, 1.4 +/- 0.4 [mean +/- SE] vs.1.0 +/- 0.3 nmol/l [P < 0.05]; threshold, 3.4 +/- 0.1 vs. 2.9 +/- 0.1 mmol/l glucose [P < 0.01]). The responses of epinephrine (peak, 4.0 +/- 1.4 vs. 3.5 +/- 0.8 nmol/l [P = 0.84]; threshold, 3.8 +/- 0.1 vs. 3.6 +/- 0.1 mmol/l glucose [P = 0.38]), water loss (peak, 194 +/- 34 vs. 179 +/- 47 g-1.m-2.h-1 [P = 0.73]; threshold, 2.9 +/- 0.2 vs. 2.9 +/- 0.2 mmol/l glucose [P = 0.90]), tremor (peak, 0.28 +/- 0.05 vs. 0.37 +/- 0.06 root mean square volts (RMS V) [P = 0.19]; threshold, 3.2 +/- 0.2 vs. 3.1 +/- 0.2 mmol/l glucose [P = 0.70]), total symptom scores (peak, 10.6 +/- 2.1 vs. 10.8 +/- 1.9 [P = 0.95]; threshold, 3.3 +/- 0.2 vs. 3.6 +/0 0.1 mmol/l glucose [P = 0.15]), and cognitive function (four-choice reaction time: threshold, 2.9 +/- 0.2 vs. 3.0 +/- 0.2 mmol/l glucose [P = 0.69]) were unaffected. CONCLUSIONS: The effect on hypoglycemic physiological responses of 2 h of experimental hypoglycemia lasts for 1-2 days in these patients with IDDM . The pathophysiological effect of antecedent hypoglycemia may be of shorter duration in IDDM patients, compared with nondiabetic subjects.  相似文献   

2.
To test the hypothesis that hypoglycemia unawareness and impaired counterregulation are reversible after meticulous prevention of hypoglycemia in IDDM patients with diabetic autonomic neuropathy (DAN), 21 patients (8 without DAN [DAN-]; 13 with DAN [DAN+]; of the latter, 7 had orthostatic hypotension [DAN+PH+] and 6 did not [DAN+PH-]) and 15 nondiabetic subjects were studied during stepped hypoglycemia (plateau plasma glucose decrements from 5.0 to 2.2 mmol/l) before and 6 months after prevention of hypoglycemia (intensive therapy). After 6 months, frequency of mild hypoglycemia decreased from approximately 20 to approximately 2 episodes/patient-month while HbA1c increased from 6.2 +/- 0.3 to 6.9 +/- 0.2% (P < 0.05). Responses of adrenaline improved more in DAN- patients (from 1.17 +/- 0.12 to 2.4 +/- 0.22 nmol/l) than in DAN+PH- (from 0.75 +/- 0.25 to 1.56 +/- 0.23 nmol/l) and DAN+PH+ patients (from 0.80 +/- 0.24 to 1.15 +/- 0.27 nmol/l, P < 0.05) but remained lower than in nondiabetic subjects (4.9 +/- 0.37 nmol/l, P < 0.05), whereas glycemic thresholds normalized only in DAN-, not DAN+. Autonomic symptoms of hypoglycemia improved but remained lower in DAN- (6.2 +/- 0.6) than in nondiabetic subjects (8.1 +/- 1.1) and lower in DAN+PH+ (4 +/- 0.8) than in DAN+PH- subjects (5.1 +/- 0.8, P < 0.05), whereas neuroglycopenic symptoms normalized (NS). Cognitive function deteriorated less before than after prevention of hypoglycemia (P < 0.05). Thus, intensive therapy with emphasis on preventing hypoglycemia reverses hypoglycemia unawareness in DAN+ patients despite marginal improvement of adrenaline responses, results in low frequency of hypoglycemia despite impaired counterregulation, and maintains HbA1c in the range of intensive therapy. We conclude that DAN, long IDDM duration per se, and antecedent recent hypoglycemia contribute to different extents to impaired adrenaline responses and hypoglycemia unawareness.  相似文献   

3.
OBJECTIVE: The purpose of this study was to assess the potential role of reduced tissue sensitivity to catecholamines in the pathogenesis of hypoglycemia unawareness in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: The effect of a single episode of hypoglycemia on beta-adrenergic sensitivity was studied in 10 type 1 diabetic patients with apparently normal awareness of hypoglycemia (age 29 +/- 5 years, diabetes duration 13 +/- 8 years, HbA1c 7.3 +/- 0.9%) and 10 age-matched healthy control subjects. Beta-adrenergic sensitivity was measured with the isoproterenol test after a hyperinsulinemic euglycemic clamp and after a hyperinsulinemic hypoglycemic clamp. Beta-adrenergic sensitivity was expressed as the dose of intravenous isoproterenol that increased the heart rate by 25 beats/min (IC25). RESULTS: During hypoglycemia, diabetic subjects had an impaired plasma epinephrine response compared with that of the control subjects (16.7 +/- 5.0 vs. 40.1 +/- 6.8 ng/ml, P = 0.02). In control subjects, the IC25 was lower after hypoglycemia than after euglycemia (0.83 +/- 0.22 vs. 1.13 +/- 0.21 microg, P = 0.02) indicating an increase in beta-adrenergic sensitivity. In diabetic subjects, on the other hand, the IC25 was greater after hypoglycemia than after euglycemia (1.00 +/- 0.26 vs. 0.65 +/- 0.14 microg, P = 0.04), indicating a decrease in beta-adrenergic sensitivity. CONCLUSIONS: In normal subjects, a single episode of hypoglycemia increases beta-adrenergic sensitivity. In diabetic subjects, in contrast, hypoglycemia reduces beta-adrenergic sensitivity. These results provide evidence that in type 1 diabetic patients, some maladaptation of tissue sensitivity to catecholamines contributes to the development of hypoglycemia unawareness. A unifying hypothesis is presented for the pathogenesis of hypoglycemia unawareness in type 1 diabetic patients incorporating the concepts of both a reduced catecholamine response and reduced adrenergic sensitivity  相似文献   

4.
We evaluated the effect of physiologic hyperinsulinemia (plasma insulin 329 +/- 62 vs 687 +/- 62 pmol/L) on counterregulatory hormone responses in 8 IDDM subjects studied during a 2-hour hypoglycemic clamp study with an equivalent degree of hypoglycemia (plasma glucose 3.1 +/- 0.1 and 3.0 +/- 0.1 mmol/L, respectively). Plasma epinephrine levels were increased by 71% during the last 60 minutes of hypoglycemia in the high insulin study (840 +/- 180 vs 1440 +/- 310 pmol/L, respectively p = 0.006). In addition, plasma cortisol and norepinephrine were also increased in the high insulin study (by 19% and 24% respectively, p < 0.01, for both). Plasma growth hormone and glucagon concentrations were not altered by high dose insulin infusion. In spite of increased epinephrine secretion, the glucose infusion rate required to maintain glucose was 2-fold greater in the high insulin study, and there was greater suppression of lipolysis in that group. We conclude that hyperinsulinemia may enhance counterregulatory hormone secretion in IDDM.  相似文献   

5.
OBJECTIVE: People with type 1 diabetes frequently develop a blunted counterregulatory hormone response to hypoglycemia coupled with a decreased hepatic response to glucagon, and consequently, they have an increased risk of severe hypoglycemia. We have evaluated the effect of insulin lispro (Humalog) versus regular human insulin (Humulin R) on the hepatic glucose production (HGP) response to glucagon in type 1 diabetic patients on intensive insulin therapy with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS: Ten subjects on CSII were treated for 3 months with lispro and 3 months with regular insulin in a double-blind randomized crossover study After 3 months of treatment with each insulin, hepatic sensitivity to glucagon was measured in each subject. The test consisted of a 4-h simultaneous infusion of somatostatin (450 microg/h) to suppress endogenous glucagon, regular insulin (0.15 mU x kg(-1) x min(-1)), glucose at a variable rate to maintain plasma glucose near 5 mmol/l, and D-[6,6-2H2]glucose to measure HGP During the last 2 h, glucagon was infused at 1.5 ng x kg(-1) x min(-1). Eight nondiabetic people served as control subjects. RESULTS: During the glucagon infusion period, free plasma insulin levels in the diabetic subjects were 71.7+/-1.6 vs. 74.8+/-0.5 pmol/l after lispro and regular insulin treatment, with plasma glucagon levels of 88.3+/-1.8 and 83.7+/-1.5 ng/l for insulin:glucagon ratios of 2.8 and 3.0. respectively (NS). However, plasma glucose increased to 9.2+/-1.1 mmo/l after lispro insulin compared with 7.1+/-0.9 mmol/l after regular insulin (P < 0.01), and the rise in HGP was 5.7 +/-2.8 micromol x kg(-1) x min(-1) after lispro insulin versus 3.1+/-2.9 micromol x kg(-1) x min(-1) after regular insulin treatment (P=0.02). In the control subjects, HGP increased by 10.7+/-4.2 micromol x kg(-1) x min(-1) under glucagon infusion. CONCLUSIONS: Insulin lispro treatment by CSII was associated with a heightened response in HGP to glucagon compared with regular human insulin. This suggests that insulin lispro increases the sensitivity of the liver to glucagon and could potentially decrease the risk of severe hypoglycemia.  相似文献   

6.
Several pituitary hormones, including corticotropin (ACTH), growth hormone (GH), prolactin, and beta-endorphin (but not thyrotropin, follicle-stimulating hormone, or luteinizing hormone), are released in response to hypoglycemia in normal subjects. In patients with insulin-dependent diabetes mellitus (IDDM), the degree of glycemic control is known to alter ACTH and GH responses to hypoglycemia. The current study was performed to examine the effect of glycemic control on prolactin and beta-endorphin responses to hypoglycemia in subjects with IDDM. We performed 3-hour stopped hypoglycemic-hyperinsulinemic clamp studies (12 pmol/kg/min) during which plasma glucose was decreased from 5.0 mmol/L to 2.2 mmol/L in steps of 0.6 mmol/L every 30 minutes in 20 subjects with uncomplicated IDDM (12 males and eight females; age, 26 +/- 2 years; IDDM duration, 10 +/- 1 years; body mass index, 23.6 +/- 0.6 kg/m2) and 10 healthy subjects (five males and five females aged 30 +/- 1 years). The 10 diabetic subjects in good glycemic control (mean hemoglobin A1 [HbA1], 7.5% +/- 0.3%; normal range, 5.4% to 7.4%) were compared with the 10 poorly controlled patients (mean HbA1, 12.6% +/- 0.5%; P < .001 v well-controlled diabetic group). During hypoglycemia, prolactin levels in the well-controlled diabetic group did not change (7 +/- 1 microgram/L at plasma glucose 5.0 mmol/L to 9 +/- 2 micrograms/L at plasma glucose 2.2 mmol/L), whereas prolactin levels increased markedly in the poorly controlled diabetic group (7 +/- 2 micrograms/L to 44 +/- 17 micrograms/L) and healthy volunteers (12 +/- 2 micrograms/L to 60 +/- 19 micrograms/L, P < .05 between IDDM groups). The plasma glucose threshold required for stimulation of prolactin secretion was 2.2 +/- 0.1 mmol/L in well-controlled IDDM, 3.0 +/- 0.4 mmol/L in poorly controlled IDDM, and 2.4 +/- 0.1 mmol/L in healthy subjects (P < .05 between IDDM groups). Responses in males and females were similar. The increase in beta-endorphin levels was also attenuated in well-controlled IDDM patients (4 +/- 1 pmol/L at plasma glucose 5.0 mmol/L to 11 +/- 4 pmol/L at plasma glucose 2.2 mmol/L) versus poorly controlled IDDM patients (5 +/- 1 pmol/L to 26 +/- 7 pmol/L) and healthy subjects (8 +/- 1 pmol/L to 56 +/- 13 pmol/L). The plasma glucose threshold required for stimulation of beta-endorphin release was again lower in well-controlled IDDM versus poorly controlled IDDM patients (2.2 +/- 0.1 v 3.0 +/- 0.3 mmol/L) and healthy subjects (2.5 +/- 0.4 mmol/L, P < .05 between IDDM groups). In conclusion, prolactin and beta-endorphin responses to a standardized hypoglycemic stimulus (plasma glucose, 2.2 mmol/L) are reduced and plasma glucose levels required to stimulate release of prolactin and beta-endorphin are lower in well-controlled IDDM compared with poorly controlled IDDM and healthy subjects. Thus, stress hormones not previously considered to have a primary role in plasma glucose recovery from hypoglycemia are affected by glycemic control, suggesting a more generalized alteration of hypothalamic-pituitary responses to hypoglycemia in IDDM patients with strict glycemic control.  相似文献   

7.
OBJECTIVE: We examined the effect of glycemic control of NIDDM on counterregulatory hormone responses to hypoglycemia and compared the effect with that seen in patients with IDDM. RESEARCH DESIGN AND METHODS: Eleven subjects with NIDDM and eight age- and weight-matched control subjects and ten subjects with IDDM and ten age- and weight-matched control subjects were studied. All subjects underwent a stepped hypoglycemic-hyper-insulinemic clamp study during which plasma glucose levels were lowered in a stepwise manner from 5.0 to 2.2 mmol/l in steps of 0.6 mmol/l every 30 min. Counterregulatory hormones (epinephrine, norepinephrine, glucagon, ACTH, cortisol, and growth hormone [GH]) were measured, and a symptom survey was administered during the last 10 min of each 30-min interval. RESULTS: The threshold for release of epinephrine, norepinephrine, ACTH, and cortisol occurred at higher plasma glucose levels in NIDDM than in IDDM patients (P < 0.05-0.01). The glucose threshold for release of epinephrine and norepinephrine correlated with glycemic control as measured by glycosylated hemoglobin (P < 0.05-0.01). However, for a given level of glycemic control, the threshold for release of epinephrine and norepinephrine occurred at a higher glucose level in NIDDM versus IDDM patients (P < 0.05-0.01). At the nadir level of hypoglycemia, glucagon, ACTH, and cortisol levels were all higher in NIDDM compared with IDDM subjects, whereas GH levels were lower. CONCLUSIONS: Glycemic control alters counterregulatory responses to hypoglycemia in NIDDM as has been previously reported in IDDM. However, at similar levels of glycemic control, NIDDM patients release counterregulatory hormones at a higher plasma glucose level than patients with IDDM. In addition, subjects with NIDDM maintain their glucagon response to hypoglycemia. These data suggest that patients with NIDDM may be at reduced risk of severe hypoglycemia when compared with a group of IDDM patients in similar glycemic control, thus providing a more favorable risk-benefit ratio for intensive diabetes therapy in NIDDM.  相似文献   

8.
OBJECTIVE: Insulin sensitivity is impaired in patients with type II diabetes and is exacerbated by high mean blood glucose (BG). Potentially, large postprandial swings in BG could result in further decrements of insulin sensitivity. Because alpha-glucosidase inhibitors cause a marked reduction in the amplitude of BG changes, the aim of this study was to determine if such a BG-smoothing effect improves insulin sensitivity in well-controlled type II diabetic subjects treated with diet alone. RESEARCH DESIGN AND METHODS: Patients received either miglitol (BAY m 1099) (50 mg three times daily) or placebo for 8 weeks in a randomized double-blind parallel study. The miglitol (9 men, 2 women) and placebo (7 men, 3 women) groups were well matched (mean +/- SD) for age, weight, and blood glucose control (fasting BG, 6.4 +/- 1.0 vs. 6.9 +/- 1.6 mmol/l; HbA1, 7.7 +/- 1.0 vs. 7.9 +/- 0.4%; fructosamine, 0.99 +/- 0.08 vs. 1.07 +/- 0.17 mmol/l). The glucose metabolic clearance rate was calculated during the last 30 min of a 150 min glucose/insulin sensitivity test (glucose, 6 mg . kg-1 . min-1; insulin, 0.5 U . kg-1 . min-1). RESULTS: There was no significant improvement in metabolic clearance rate (0.21 +/- 0.27 vs. 0.16 +/- 0.35 l . kg-1 . min-1) for the miglitol- and placebo-treated groups, respectively. There were no statistically significant differences between miglitol and placebo for changes from baseline in BG (0.1 +/- 0.1 vs. -0.1 +/- 0.2 mmol/l), HbA1 (0.1 +/- 0.1 vs. 0.3 +/- 0.1%), and fructosamine (-0.06 +/- 0.02 vs. -0.03 +/- 0.02 mmol/l). CONCLUSIONS: Alpha-glucosidase-induced improvement in postprandial hyperglycemia does not result in increased insulin sensitivity.  相似文献   

9.
BACKGROUND: In patients with type I diabetes mellitus, hypoglycemia occurs commonly during sleep and is frequently asymptomatic. This raises the question of whether sleep is associated with reduced counterregulatory-hormone responses to hypoglycemia. METHODS: We studied the counterregulatory-hormone responses to insulin-induced hypoglycemia in eight adolescent patients with type I diabetes and six age-matched normal subjects when they were awake during the day, asleep at night, and awake at night. In each study, the plasma glucose concentration was stabilized for 60 minutes at approximately 100 mg per deciliter (5.6 mmol per liter) and then reduced to 50 mg per deciliter (2.8 mmol per liter) and maintained at that concentration for 40 minutes. Plasma free insulin, epinephrine, norepinephrine, cortisol, and growth hormone were measured frequently during each study. Sleep was monitored by polysomnography. RESULTS: The plasma glucose and free insulin concentrations were similar in both groups during all studies. During the studies when the subjects were asleep, no one was awakened during the hypoglycemic phase, but during the final 30 minutes of the studies when the subjects were awake both the patients with diabetes and the normal subjects had symptoms of hypoglycemia. In the patients with diabetes, plasma epinephrine responses to hypoglycemia were blunted when they were asleep (mean [+/-SE] peak plasma epinephrine concentration, 70+/-14 pg per milliliter [382+/-76 pmol per liter]; P=0.3 for the comparison with base line), as compared with when they were awake during the day or night (238+/-39 pg per milliliter [1299+/-213 pmol per liter] P=0.004 for the comparison with base line, and 296+/-60 pg per milliliter [1616+/-327 pmol per liter], P=0.004, respectively). The patients' plasma norepinephrine responses were also reduced during sleep, whereas their plasma cortisol concentrations did not increase and their plasma growth hormone concentrations increased slightly. The patterns of counterregulatory-hormone responses in the normal subjects were similar. CONCLUSIONS: Sleep impairs counterregulatory-hormone responses to hypoglycemia in patients with diabetes and normal subjects.  相似文献   

10.
OBJECTIVE: The relation between the clinical manifestations of thyroid disease (both hypo and hyper-thyroidism) and tissue sensitivity to catecholamines remains uncertain. It has been suggested that tissue adrenergic responsiveness is decreased in hypothyroidism, but the reports have been conflicting and have invariably focused on a single physiological response. Therefore the aim of the present study was to determine in patients with moderate, short-term, symptomatic hypothyroidism the responses of heart rate, systolic and diastolic blood pressure, forearm blood flow and metabolic rate to adrenaline infused at a rate known to achieve plasma concentrations in the middle of the physiological range. PATIENTS: Ten subjects (5M, age 43 +/- 3 years, mean +/- SEM) were studied. All were on thyroxine replacement for hypothyroidism following either thyroidectomy or radioactive iodine and had been biochemically euthyroid for at least 6 months. DESIGN: Studies were performed in random order. One study was undertaken on full replacement therapy and the other after 50 micrograms thyroxine daily for 2 weeks. After basal, supine measurements adrenaline was infused at 25 ng/kg/min for 30 minutes. MEASUREMENTS: Heart rate, blood pressure, blood glucose, metabolic rate and forearm blood flow were measured at rest and at 10-minute intervals throughout the adrenaline infusion. RESULTS: Free T4 (10.6 +/- 1.3 vs 17.6 +/- 2.0 pmol/l, P < 0.001) and free T3 (3.6 +/- 0.2 vs 4.6 +/- 0.3 pmol/l, P < 0.01) concentrations were significantly lower on 50 micrograms thyroxine than full replacement therapy. Fasting blood glucose concentrations (4.7 +/- 0.2 vs 4.7 +/- 0.1 mmol/l) were similar. The resting adrenaline concentrations were comparable, 0.29 +/- 0.18 and 0.24 +/- 0.14 nmol/l on 50 micrograms thyroxine and full replacement therapy respectively, and increased to a similar level (2.36 +/- 0.39 and 2.36 +/- 0.35 nmol/l) throughout the adrenaline infusion. The resting heart rate and metabolic rate were significantly lower on 50 micrograms thyroxine than full replacement therapy (68 +/- 2 vs 72 +/- 3 beats/min, P < 0.01; and 4.48 +/- 0.35 vs 4.88 +/- 0.39 kJ/min, P < 0.01) respectively, but the increase in heart rate (7 +/- 2 vs 8 +/- 2 beats/min) and metabolic rate (0.43 +/- 0.09 vs 0.43 +/- 0.06 kJ/min) did not differ on the two study days. Resting systolic blood pressure, diastolic blood pressure and forearm blood flow were comparable on 50 micrograms thyroxine and full replacement therapy as were the changes in systolic blood pressure (1 +/- 1 vs 1 +/- 1 mmHg), diastolic blood pressure (-7 +/- 2 vs -7 +/- 1 mmHg), forearm blood flow (1.4 +/- 0.1 vs 1.7 +/- 0.2 ml/min/100ml forearm) and blood glucose concentration (0.7 +/- 0.1 vs 0.7 +/- 0.1 mmol/l). CONCLUSIONS: Patients with short-term hypothyroidism appear to have a normal response to adrenaline infusion despite reduced baseline heart rate and metabolic rate. Thus, under physiological and mild pathophysiological conditions there appears to be no evidence of any synergy between thyroid status and sensitivity to catecholamines.  相似文献   

11.
Previous studies have shown that hypoglycemia may reduce counterregulatory responses to subsequent hypoglycemia in healthy subjects and in patients with diabetes. The effect of hypoglycemia on the hormonal response to a nonhypoglycemic stimulus is uncertain. To test the hypothesis that the cortisol response to corticotropin (ACTH) infusion is independent of antecedent hypoglycemia, 10 healthy subjects received a standard ACTH infusion (0.25 mg Cosyntropin [Organon, West Orange, NJ] intravenously over 240 minutes) at 8:00 AM on day 1 and day 3 and a hypoglycemic insulin clamp study (1 mU/kg/min) at 8:00 AM on day 2. During the hypoglycemic clamp, plasma glucose decreased from 5.0 mmol/L to 2.8 mmol/L for two periods of 120 minutes (mean glucose, 2.9 +/- 0.03 and 2.8 +/- 0.02 mmol/L, respectively) separated by a 60-minute interval of euglycemia (mean glucose, 4.7 +/- 0.01 mmol/L). Seven subjects also had paired control studies in random order during which a 330-minute euglycemic clamp (mean glucose, 5.0 +/- 0.11 mmol/L) instead of a hypoglycemic clamp was performed on day 2. Basal ACTH (4.6 +/- 0.7 v 2.6 +/- 0.4 pmol/L, P < .02) and basal cortisol (435 +/- 46 v 317 +/- 40 nmol/L, P < .02) both decreased from day 1 to day 3 following intervening hypoglycemia. In contrast, with intervening euglycemia, neither basal ACTH (5.9 +/- 1.5 v 4.5 +/- 1.0 pmol/L) nor basal cortisol (340 +/- 38 v 318 +/- 60 nmol/L) were reduced significantly on day 3 compared with day 1. Following interval hypoglycemia, the area under the curve (AUC) for the cortisol response to successive ACTH infusions was increased (4,734 +/- 428 nmol/L over 240 minutes [day 3] v 3,526 +/- 434 nmol/L over 240 minutes [day 1], P < .01). The maximum incremental cortisol response was also significantly increased (805 +/- 63 nmol/L (day 3) v 583 +/- 58 nmol/L (day 1), P < .05). In contrast, the AUC for the cortisol response to successive ACTH infusions with interval euglycemia (3,402 +/- 345 nmol/L over 240 minutes [day 3] v 3,709 +/- 391 nmol/L over 240 minutes [day 1] and the incremental cortisol response (702 +/- 62 nmol/L [day 3] v 592 +/- 85 nmol/L [day 1] were unchanged. Following exposure to intermittent hypoglycemia in healthy humans, fasting morning ACTH and cortisol levels are reduced and the incremental cortisol response to an infusion of ACTH is enhanced. The enhanced cortisol response to exogenous ACTH infusion after intervening hypoglycemia (but not intervening euglycemia) may reflect priming of the adrenal gland by endogenous ACTH produced during the hypoglycemia. These data suggest that adrenal function testing by exogenous ACTH administration is not impaired by prior exposure to hypoglycemia. Moreover, the reduced cortisol response to recurrent hypoglycemia in patients with well-controlled diabetes is not likely the result of impaired adrenal responsiveness.  相似文献   

12.
We tested the hypothesis that as few as two weekly brief episodes of superimposed hypoglycemia (i.e., doubling the average frequency of symptomatic hypoglycemia) would reduce physiological and behavioral defenses against developing hypoglycemia and reduce detection of clinical hypoglycemia in patients with type 1 diabetes mellitus (T1DM). Compared with nondiabetic controls, six patients with well-controlled T1DM (HbA1c, 7.5 +/- 0.7% [mean +/- SD]) exhibited absent glucagon responses and reduced epinephrine (P = 0.0027), norepinephrine (P = 0.0007), pancreatic polypeptide (P = 0.0030), and neurogenic symptom (P = 0.0451) responses to hypoglycemia as expected. In these patients, 2 h of induced hypoglycemia (50 mg/dl, 2.8 mmol/l) twice weekly for 1 month, compared in a random-sequence crossover design with an otherwise identical 2 h of induced hyperglycemia (150 mg/dl, 8.3 mmol/l) twice weekly for 1 month, further reduced the epinephrine (P = 0.0001) and pancreatic polypeptide (P = 0.0030) responses, tended to further reduce the norepinephrine and neurogenic symptom responses to hypoglycemia, and reduced cognitive dysfunction during hypoglycemia (P = 0.0271), all assessed in the investigational setting. In the clinical setting, induced hypoglycemia did not alter overall glycemic control, but did reduce the total number of symptomatic hypoglycemic episodes detected by the patients from 49 to 30 per month and lowered the mean +/- SE self-monitored blood glucose level during symptomatic hypoglycemia from 51 +/- 2 mg/dl (2.8 +/- 0.1 mmol/l) to 46 +/- 3 mg/dl (2.6 +/- 0.2 mmol/l) (P < 0.01). It also reduced the proportion of low regularly scheduled self-monitored values that were symptomatic by approximately 33%. Thus as little as doubling the frequency of symptomatic hypoglycemia further reduced both the key epinephrine response and clinical awareness of developing hypoglycemia, changes reasonably expected to increase the risk of severe iatrogenic hypoglycemia in T1DM.  相似文献   

13.
In healthy subjects, basal hepatic glucose production is (partly) regulated by paracrine intrahepatic factors. It is unknown if these paracrine factors also influence basal glucose production in infectious diseases with increased glucose production. We compared the effects of 150 mg indomethacin (n = 9), a nonendocrine stimulator of glucose production in healthy adults, and placebo (n = 7) on hepatic glucose production in Vietnamese adults with uncomplicated falciparum malaria. Glucose production was measured by primed, continuous infusion of [6,6-2H2]glucose. After indomethacin, the plasma glucose concentration and glucose production increased in all subjects from 5.3 +/- 0.1 mmol/L to a maximum of 7.1 +/- 0.3 mmol/L (P < .05) and from 17.6 +/- 0.8 micromol x kg(-1) x min(-1) to a maximum of 26.2 +/- 2.5 micromol x kg(-1) x min(-1) (P < .05), respectively. In the control group, the plasma glucose concentration and glucose production declined gradually during 4 hours from 5.4 +/- 0.2 mmol/L to 5.1 +/- 0.1 mmol/L (P < .05) and from 17.1 +/- 0.8 micromol x kg(-1) x min(-1) to 15.1 +/- 1.0 micromol x kg(-1) x min(-1) (P < .05), respectively. There were no differences in plasma concentrations of insulin, counterregulatory hormones, or cytokines between the groups. We conclude that indomethacin administration results in a transient increase in glucose production in patients with uncomplicated falciparum malaria in the absence of changes in plasma concentrations of glucoregulatory hormones or cytokines. Thus, this study indicates that in uncomplicated falciparum malaria, the rate of basal hepatic glucose production is also regulated by paracrine intrahepatic factors.  相似文献   

14.
The glucoregulatory and hormonal responses to moderate-intensity exercise (50% VO2max for 45 min) were examined in subjects with type 2 diabetes and mild hyperglycemia. We studied seven obese subjects with type 2 diabetes and seven lean and seven obese control subjects (fasting plasma glucose levels, 7.5 +/- 0.5, 4.8 +/- 0.1, and 5.2 +/- 0.1 mmol/l, respectively). Glucose production, utilization, and cycling (flux between glucose and glucose-6-phosphate [G-6-P]) were measured with [6-(3)H]glucose and [2-(3)H]glucose using the constant specific-activity method. Insulin levels decreased normally during exercise in diabetic subjects. Plasma glucose levels decreased in diabetic subjects, but remained constant in control subjects. Basal glucose production was not different among groups and increased similarly during exercise. The decrease in plasma glucose in diabetic subjects was due to greater glucose utilization (867 +/- 83 vs. 726 +/- 143 micromol x m(-2) x min(-1); P < 0.05). This was a consequence of the mass effect of hyperglycemia, since glucose metabolic clearance increased similarly in all groups. Glucose cycling, expressed as a percentage of total glucose output (i.e., flux through G-6-P) was elevated at rest (P < 0.01), but decreased during exercise (P < 0.01). The catecholamine response to exercise was blunted in diabetic subjects, presumably indicating autonomic dysfunction. In conclusion, during moderate-intensity exercise in obese diabetic subjects with mild hyperglycemia, 1) insulin secretory responses were normally regulated; 2) glucose homeostasis was different from that in nondiabetic subjects because glucose levels decreased during exercise; 3) the decrease in plasma glucose was due to greater-than-normal rates of glucose utilization, which were sustained by hyperglycemia; and 4) elevated basal rates of glucose cycling decreased during exercise, presumably because exercise simultaneously lowered plasma glucose, was associated with a blunted catecholamine response, and accentuated an underlying defect in hepatic glucokinase activity in type 2 diabetes.  相似文献   

15.
Impaired glucose tolerance (IGT) and NIDDM are both associated with an impaired ability of the beta-cell to sense and respond to small changes in plasma glucose concentrations. The aim of this study was to establish if glucagon-like peptide 1 (GLP-1), a natural enteric peptide and potent insulin secretagogue, improves this defect. Two weight-matched groups, one with eight subjects having IGT (2-h glucose, 10.1 +/- 0.3 mmol/l) and another with seven subjects with diet-treated NIDDM (2-h glucose, 14.5 +/- 0.9 mmol/l), were studied on two occasions during a 12-h oscillatory glucose infusion, a sensitive test of the ability of the beta-cell to sense and respond to glucose. Glucose was infused with a mean rate of 4 mg x kg(-1) x min(-1), amplitude 33% above and below the mean rate, and periodicity of 144 min, with infusion of saline or GLP-1 at 0.4 pmol x kg(-1) x min(-1) for 12 h. Mean glucose levels were significantly lower in both groups during the GLP-1 infusion compared with during saline infusion: 9.2 +/- 0.4 vs. 6.4 +/- 0.1 mmol/l in the IGT subjects (P < 0.0004) and 14.6 +/- 1.0 vs. 9.3 +/- 0.7 mmol/l in NIDDM subjects (P < 0.0002). Despite this significant reduction in plasma glucose concentration, insulin secretion rates (ISRs) increased significantly in IGT subjects (513.3 +/- 77.6 vs. 583.1 +/- 100.7 pmol/min; P < 0.03), with a trend toward increasing in NIDDM subjects (561.7 +/- 122.16 vs. 642.8 +/- 128 pmol/min; P = 0.1). These results were compatible with enhanced insulin secretion in the presence of GLP-1. Spectral power was used as a measure of the ability of the beta-cell to secrete insulin in response to small changes in the plasma glucose concentration during the oscillatory infusion. Spectral power for ISR increased from 2.1 +/- 0.9 during saline infusion to 7.4 +/- 1.3 during GLP-1 infusion in IGT subjects (P < 0.004), but was unchanged in NIDDM subjects (1.0 +/- 0.4 to 1.5 +/- 0.6; P = 0.3). We concluded that low dosage GLP-1 improves the ability of the beta-cell to secrete insulin in both IGT and NIDDM subjects, but that the ability to sense and respond to subtle changes in plasma glucose is improved in IGT subjects, with only a variable response in NIDDM subjects. Beta-cell dysfunction was improved by GLP-1 infusion, suggesting that early GLP-1 therapy may preserve beta-cell function in subjects with IGT or mild NIDDM.  相似文献   

16.
Nonenzymatic glycation of proteins and oxidative stress are considered independent factors important in the development of the complications of diabetes but may be interrelated by the process of autoxidative glycation. This pathway involves monosaccharide autoxidation to a reactive ketoaldehyde analogue and subsequent reaction with protein to form a ketoimine adduct. This study demonstrates that delta-gluconolactone (delta-GL), an oxidised analogue of glucose, is a potent glycating agent in vitro of haemoglobin present in blood samples from insulin-dependent diabetic and non-diabetic human subjects and from spontaneously diabetic, insulin-dependent BB/Edinburgh (BB/E) rats. The percentage glycated haemoglobin after incubation (37 degrees C, 5 h) with delta-GL (25 mmol/l) was significantly (P < 0.002) higher than that observed using an equimolar concentration of glucose. Intravenous administration of delta-GL (1 g/kg) to non-diabetic BB/E rats also significantly increased glycation of haemoglobin (6.0 +/- 0.1% vs 4.9 +/- 0.1%, P < 0.01) whereas intravenous injection of an identical dose of glucose had no significant effect (5.1 +/- 0.1% vs 5.0 +/- 0.2%). These results support the hypothesis that nonenzymatic glycation of proteins involves attachment by both native and oxidised monosaccharides. Further investigation of the interactions between diabetes-associated increases in oxidative stress and glycation on the development and progression of the vascular complications of diabetes is necessary.  相似文献   

17.
The contribution of gluconeogenic precursors to renal glucose production (RGP) during insulin-induced hypoglycemia was assessed in conscious dogs. Ten days after surgical placement of sampling catheters in the right and left renal veins and femoral artery and an infusion catheter in the left renal artery, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [6-3H]glucose and [2-13C]glycerol. Renal blood flow was determined with a flowprobe, and the renal balance of lactate, alanine, and glycerol was calculated by arteriovenous difference. After baseline, six dogs received 2-h simultaneous infusions of peripheral insulin (4 mU x kg(-1) x min(-1)) and left intrarenal [6,6-2H]dextrose (14 micromol x kg(-1) x min(-1)) to achieve and maintain left renal normoglycemia during systemic hypoglycemia. Arterial glucose decreased from 5.3 +/- 0.1 to 2.2 +/- 0.1 mmol/l; insulin increased from 46 +/- 5 to 1,050 +/- 50 pmol/l; epinephrine, from 130 +/- 8 to 1,825 +/- 50 pg/ml; norepinephrine, from 129 +/- 6 to 387 +/- 15 pg/ml; and glucagon, from 52 +/- 2 to 156 +/- 12 pg/ml (all P < 0.01). RGP increased from 1.7 +/- 0.4 to 3.0 +/- 0.5 (left) and from 0.6 +/- 0.2 to 3.2 +/- 0.2 (right) micromol x kg(-1) x min(-1) (P < 0.01). Whole-body glycerol appearance increased from 6.0 +/- 0.5 to 7.7 +/- 0.7 micromol x kg(-1) x min(-1)(P < 0.01); renal conversion of glycerol to glucose increased from 0.13 +/- 0.04 to 0.30 +/- 0.10 (left) and from 0.11 +/- 0.03 to 0.25 +/- 0.05 (right) micromol x kg(-1) x min(-1), (P < 0.05). Net renal gluconeogenic precursor uptake increased from 1.5 +/- 0.4 to 5.0 +/- 0.4 (left) and from 0.9 +/- 0.2 to 3.8 +/- 0.4 (right) micromol x kg(-1) x min(-1) (P < 0.01). Renal lactate uptake could account for approximately 40% of postabsorptive RGP and for 60% of RGP during hypoglycemia. These results indicate that gluconeogenic precursor extraction by the kidney, particularly lactate, is stimulated by counterregulatory hormones and accounts for a significant fraction of the enhanced gluconeogenesis induced by hypoglycemia.  相似文献   

18.
OBJECTIVE: To determine the efficacy of acarbose, compared with placebo, on the metabolic control of NIDDM patients inadequately controlled on maximal doses of conventional oral agents. RESEARCH DESIGN AND METHODS: In this three-center double-blind study, 90 Chinese NIDDM patients with persistent poor glycemic control despite maximal doses of sulfonylurea and metformin were randomly assigned to receive additional treatment with acarbose 100 mg thrice daily or placebo for 24 weeks, after 6 weeks of dietary reinforcement. Efficacy was assessed by changes in HbA1c, fasting and 1-h postprandial plasma glucose and insulin levels, and fasting lipid levels. RESULTS: Acarbose treatment was associated with significantly greater reductions in HbA1c (-0.5 +/- 0.2% vs. placebo 0.1 +/- 0.2% [means +/- SEM], P = 0.038), 1-h postprandial glucose (-2.3 +/- 0.4 mmol/l vs. placebo 0.7 +/- 0.4 mmol/l, P < 0.001) and body weight (-0.54 +/- 0.32 kg vs. placebo 0.42 +/- 0.29 kg, P < 0.05). There was no significant difference between the two groups regarding changes in fasting plasma glucose and lipids or fasting and postprandial insulin levels. Flatulence was the most common side effect (acarbose vs. placebo: 28/45 vs. 11/44, P < 0.05). One patient on acarbose had asymptomatic elevations in serum transaminases that normalized in 4 weeks after acarbose withdrawal. Another patient on acarbose developed severe hypoglycemia; glycemic control was subsequently maintained on half the baseline dosage of sulfonylurea. CONCLUSIONS: In NIDDM patients inadequately controlled on conventional oral agents, acarbose in moderate doses resulted in beneficial effects on glycemic control, especially postprandial glycemia, and mean body weight. Additional use of acarbose can be considered as a useful alternative in such patients if they are reluctant to accept insulin therapy.  相似文献   

19.
Gestational diabetes mellitus (GDM) is associated with defects in insulin secretion and insulin action, and women with a history of GDM carry a high risk for the development of non-insulin-dependent diabetes mellitus (NIDDM). Assessment of subjects with a history of GDM who are currently normoglycemic should help elucidate some of the underlying defects in insulin secretion or action in the evolution of NIDDM. We have studied 14 women with normal oral glucose tolerance who had a history of GDM. They were compared with a group of control subjects who were matched for both body mass index (BMI) and waist-to-hip ratio (WHR). All subjects underwent tests for the determination of oral glucose tolerance, ultradian oscillations in insulin secretion during a 28-h glucose infusion, insulin secretion in response to intravenous glucose, glucose disappearance after intravenous glucose (Kg), and insulin sensitivity (SI) as measured by the Bergman minimal model method. The BMI in the post-GDM women was similar to that in the control subjects (24.9 +/- 1.2 vs. 25.4 +/- 1.4 kg/m2, respectively), as was the WHR ratio (0.80 +/- 0.01 vs. 0.76 +/- 0.01, respectively). The post-GDM women were slightly older (35.2 +/- 0.9 vs. 32.1 +/- 1.4 years, P = 0.04). The fasting plasma glucose levels were significantly higher in the post-GDM group than in the control group (4.9 +/- 0.1 vs. 4.4 +/- 0.1 mmol/l, respectively, P < 0.001) and remained higher at each of the subsequent determinations during the oral glucose tolerance test, although none had a result indicative of either diabetes or impaired glucose tolerance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Chromium is an essential nutrient involved in normal carbohydrate and lipid metabolism. The chromium requirement is postulated to increase with increased glucose intolerance and diabetes. The objective of this study was to test the hypothesis that the elevated intake of supplemental chromium is involved in the control of type 2 diabetes. Individuals being treated for type 2 diabetes (180 men and women) were divided randomly into three groups and supplemented with: 1) placebo, 2) 1.92 micromol (100 microg) Cr as chromium picolinate two times per day, or 3) 9.6 micromol (500 microg) Cr two times per day. Subjects continued to take their normal medications and were instructed not to change their normal eating and living habits. HbA1c values improved significantly after 2 months in the group receiving 19.2 pmol (1,000 microg) Cr per day and was lower in both chromium groups after 4 months (placebo, 8.5 +/- 0.2%; 3.85 micromol Cr, 7.5 +/- 0.2%; 19.2 micromol Cr, 6.6 +/- 0.1%). Fasting glucose was lower in the 19.2-micromol group after 2 and 4 months (4-month values: placebo, 8.8 +/- 0.3 mmol/l; 19.2 micromol Cr, 7.1 +/- 0.2 mmol/l). Two-hour glucose values were also significantly lower for the subjects consuming 19.2 micromol supplemental Cr after both 2 and 4 months (4-month values: placebo, 12.3 +/- 0.4 mmo/l; 19.2 micromol Cr, 10.5 +/- 0.2 mmol/l). Fasting and 2-h insulin values decreased significantly in both groups receiving supplemental chromium after 2 and 4 months. Plasma total cholesterol also decreased after 4 months in the subjects receiving 19.2 micromol/day Cr. These data demonstrate that supplemental chromium had significant beneficial effects on HbA1c, glucose, insulin, and cholesterol variables in subjects with type 2 diabetes. The beneficial effects of chromium in individuals with diabetes were observed at levels higher than the upper limit of the Estimated Safe and Adequate Daily Dietary Intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号