首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel LaMgAl11O19:Tm3+, Dy3+ phosphors were prepared utilizing a high‐temperature solid‐state reaction method. The phase formation, luminescence properties, energy‐transfer mechanism from the Tm3+ to the Dy3+ ions, the thermal stability, and CIE coordinates were investigated. When excited at 359 nm, the LaMgAl11O19: xTm3+ phosphors exhibit strong blue emission bands at 455 nm. After codoping with Dy3+ and excitation at 359 nm, the LaMgAl11O19:0.03Tm3+, yDy3+ phosphors emitted white light consisting of the characteristic emission peaks of Tm3+ and Dy3+. The Dy3+ emission intensity increased with the Dy3+ concentration due to the energy transfer from Tm3+ to Dy3+, and concentration quenching due to the high Dy3+ doping concentration (= 0.1 mol) did not occur. The calculation of the CIE coordinates of the LaMgAl11O19:Tm3+, yDy3+ phosphors revealed the tunability of the emission color from blue to bluish‐white and to white by changing the excitation wavelength and the doping concentration. An energy transfer from Tm3+ to Dy3+ by dipole–dipole interaction was confirmed by the decay curve, lifetime, and energy‐transfer efficiency measurements. When excited at 359 nm, the LaMgAl11O19:Tm3+, Dy3+ phosphor also showed good thermal stability, suggesting that it can be used in white LEDs excited by a GaN‐based ultraviolet LED.  相似文献   

2.
Heavily Eu3+‐doped BaCa2In6O12 phosphors were prepared by conventional solid‐state reaction, and its structural properties were investigated by means of Rietveld refinement method using an X‐ray source. XRD patterns confirm the hexagonal phase of BaCa2In6O12: Eu3+ phosphors. The obtained spectrum data indicate that the emission spectra of Ba1?xEuxCa2In6O12 samples excited at 393 nm exhibit a series of shaped peaks assigned to the 5D0,1,2,37FJ (J = 0,1,2,3,4) transitions. Luminescence from the higher excited states, such as 5D1, 5D2, and 5D3, were also observed even though the Eu3+ concentration was up to x = 0.4. More importantly, the Ba1?xEuxCa2In6O12 phosphor still emits white luminescence, when the Eu3+ ion concentration is up to x = 0.07 before concentration quenching is observed, which shows that the phosphor is a promising single‐phase phosphor for near ultraviolet (NUV) light‐emitting diodes (LED). Furthermore, the temperature's impact on white luminescent properties was studied. Finally, a white‐light‐emitting diodes (W‐LEDs) fabricated with the Ba0.95Eu0.05Ca2In6O12 phosphor incorporated with an encapsulant in ultraviolet LEDs (λmax = 395 nm) is discussed.  相似文献   

3.
Spectroscopic properties of Ba2Gd(BO3)2Cl: Dy3+ and Ba2Gd(BO3)2Cl: Dy3+, Tm3+ under vacuum ultraviolet (VUV) and ultraviolet (UV) light excitations were investigated. Dy3+ single‐doped Ba2Gd(BO3)2Cl showed broad absorption band in the VUV region, and bright warm white light with chromaticity coordinates (CIE) of (0.340, 0.381) upon VUV excitation at 172 nm, demonstrating this phosphor's applicability in mercury free lamps. Upon direct excitation Tm3+ from its 6F6 level to 1D2 level, the decrease of emission intensity and lifetime of Tm3+ 1D23F4 emission with increasing concentration of Dy3+ in Ba2Gd(BO3)2Cl: Dy3+, Tm3+ confirmed the occurrence of energy transfer from Tm3+ to Dy3+. In addition, Ba2Gd(BO3)2Cl: Dy3+, Tm3+ could be efficiently excited by 358 nm UV light and its emission color could be tuned from blue to yellow by codoping Tm3+. When 1% Tm3+ and 5% Dy3+ were codoped in the Ba2Gd(BO3)2Cl, intensive white‐emitting light with CIE of (0.352, 0.328) and correlated color temperature of 4589 K was achieved upon 358 nm excitation, revealing the potential application of Ba2Gd(BO3)2Cl: Dy3+, Tm3+ for white light‐emitting diodes (LEDs).  相似文献   

4.
A novel Y3?xSi6N11: xCe3+ yellow phosphor was synthesized using the carbothermal reduction and nitridition method at 1550°C for 16 h in this letter. Photoluminescence spectra indicated that the phosphor showed broad excitation spectrum and had strong absorption in range of 350–450 nm. It also gave a broad emission band (Full width at half maximum = 153 nm) centered at 575 nm under 425‐nm excitation. With increasing Ce3+ concentration, the strongest emission intensity was obtained at 5 mol% Ce3+ doping amount and a systematic redshift was observed as the Ce3+ concentration increased. The results indicate that this novel yellow phosphor is a promising candidate for using in blue‐chip‐excited white light–emitting diodes (LEDs).  相似文献   

5.
Novel Dy3+ and Ce3+ doped Si–B–Na–Sr (SBNS) glasses were synthesized by melt‐quenching technique. Excited by 327 nm, the 0.5Dy3+‐and 0.5Ce3+‐doped SBNS exhibits white emission with Commission Internationale de L'Eclairage coordinates of (0.308, 0.280). Basic optical characterizations have been performed by measuring the absorption and emission spectra and calculating Judd–Ofelt intensity parameters, radiative probability, luminescence branching ratio, cross sections, and effective bandwidth. The Judd–Ofelt parameters Ω2, Ω4, and Ω6 indicate a high asymmetrical environment and covalent environment in the optical glass. The emission color of Ce3+ and Dy3+ codoped transparent glass can be tuned from blue to white through energy transfer from Ce3+ to Dy3+ ions. The resulting glass may have potential application in white‐light‐emitting source.  相似文献   

6.
To develop warm‐white light‐emitting diodes via conversion phosphors, blue light‐emitting diodes are generally combined with mixtures of green and red‐emitting phosphor powders. Generally, the phosphors are provided by resin embedded particle dispersions. Such resin‐based solutions cause several drawbacks with respect to LED lifetime and quality. Therefore, it has been investigated whether the red‐emitting nitride phosphor CaAlSiN3:Eu and the green‐emitting oxidic phosphor YAG:Ce can be cofired to layered ceramic composites. The shrinkage behavior and the composition of the interface in dependence of sintering temperature and the effect of interdiffusion processes at the interface on the luminescence properties were investigated. The formation of secondary phases at the interface in the cofired structures was found to limit the phosphor functionality for the nitride‐based CaAlSiN3:Eu in such composite ceramics. To counteract this, sacrificial interlayers were introduced to produce multilayered ceramics comprising CaAlSiN3:Eu and YAG:Ce for LED lighting applications. It is shown for the first time, that it is possible to sinter layered CaAlSiN3:Eu and YAG:Ce composite ceramics in a pressureless process at moderate sintering temperatures if one uses thin‐film passivated interfaces to reduce luminescence‐disturbing diffusion phenomena. These results demonstrate that diffusion barriers can be suitable means to obtain layered ceramic composites comprising CaAlSiN3:Eu and YAG:Ce in a pressureless sintering process with good optical properties.  相似文献   

7.
Rare‐earth ion‐doped semiconducting phosphor has attracted extensive attention due to the ability to achieve efficient luminescence through the host sensitization. Here, we present a new type red‐emitting Eu3+ ‐doped BiOCl phosphors possessing a broad excitation band in the near‐ultraviolet (NUV) region. Experimental measurements and theoretical calculations confirm that Eu3+ ion dopants result in forming impurity energy level near valence band, and the excellent broadband NUV‐exciting ability of Eu3+ ion is due to the electronic transitions of BiOCl band gap. Moreover, the highest emission intensity of the phosphors is from the 5D07F4 transition of Eu3+ around 699 nm (far‐red) through whether host excitation or direct Eu3+ ions excitation, which lie in the particular structure of BiOCl crystals. Our results indicate that the Eu3+ ‐doped BiOCl crystals show great potential as red phosphors for white‐light‐emitting diodes.  相似文献   

8.
Eu3+‐doped transparent phosphate precursor glasses and glass‐ceramics containing TbPO4 nanocrystals were successfully fabricated by a conventional high‐temperature melt‐quenching technique for the first time. The formation of TbPO4 nanocrystals was identified through X‐ray diffraction, transmission electron microscopy, high‐resolution transmission electron microscopy, selected‐area electron diffraction, and photoluminescence emission spectra. The obvious Stark splitting of 5D07FJ (J = 1, 2, 4) transitions of Eu3+and the increase of internal quantum efficiency indicate the incorporation of Eu3+ into TbPO4 nanocrystals. Energy transfer from Tb3+ ions to Eu3+ ions was investigated using excitation and emission spectra at room temperature. The glass‐ceramics obtained have more efficient Tb3+ to Eu3+ energy transfer than the glass, and so serve as good hosts for luminescent materials.  相似文献   

9.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

10.
Eu2+‐doped AlN‐polytypoids (8H, 15R, 12H, and 21R) were successfully synthesized by nitrogen‐gas‐pressure sintering. The phosphors show intense blue emissions under the electron beam excitation. All the polytypoid phosphors exhibit relatively a smaller degradation in luminance and a higher thermal stability in comparison to the oxide counterparts. Among the polytypoids, 12H has no luminance saturation, and shows a brightness of 40 cd/m2 at 3 kV and 100 μA. These results indicate that Eu2+‐doped AlN‐polytypoids could also be used as blue phosphors for FEDs.  相似文献   

11.
The precursor glass in the ZnO–Al2O3–B2O3–SiO2 (ZABS) system doped with Eu2O3 was prepared by the melt‐quench technique. The transparent willemite, Zn2SiO4 (ZS) glass–ceramic nanocomposites were derived from this precursor glass by a controlled crystallization process. The formation of willemite crystal phase, size, and morphology with increase in heat‐treatment time was examined by X‐ray diffraction (XRD) and field‐emission scanning electron microscopy (FESEM) techniques. The average calculated crystallite size obtained from XRD is found to be in the range 18–70 nm whereas the grain size observed in FESEM is 50–250 nm. The refractive index value is decreased with increase in heat‐treatment time which is caused by the partial replacement of ZnO4 units of ZS nanocrystals by AlO4 units due to generation of vacancies. Fourier transform infrared (FTIR) reflection spectroscopy was used to evaluate its structural evolution. Vickers hardness study indicates marked improvement of hardness in the resultant glass‐ceramics compared with its precursor glass. The photoluminescence spectra of Eu3+ ions exhibit emission transitions of 5D07Fj (j = 0, 1, 2, 3, and 4) and its excitation spectra show an intense absorption band at 395 nm. These spectra reveal that the luminescence performance of the glass–ceramic nanocomposites is enhanced up to 17‐fold with the process of heat treatment. This enhancement is caused by partitioning of Eu3+ ions into glassy phase instead of into the willemite crystals with progress of heat treatment. Such luminescent glass–ceramic nanocomposites are expected to find potential applications in solid‐state red lasers, phosphors, and optical display systems.  相似文献   

12.
A series of Dysprosium (Dy3+) doped β‐Tricalcium phosphate [β‐TCP, β‐Ca3(PO4)2] were developed for applications in magnetic resonance imaging (MRI) and computed tomography (CT). Characterization studies confirmed the Dy3+ occupancy at Ca2+(1), Ca2+(2), and Ca2+(3) lattice sites of β‐Ca3(PO4)2 and its substitution limit was determined as 4.35 mol%. The transitions from the 6H15/2 ground state to various excited energy levels is validated by the characteristic absorption peaks of Dy3+. Luminescence studies inferred two intense bands at 480 and 572 nm due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions of Dy3+. The paramagnetic and nontoxic behavior of Dy3+‐doped β‐Ca3(PO4)2 were confirmed from magnetic and MTT tests, respectively. Dy3+ in the host induces a high X‐ray absorption ability for X‐ray computed tomography (CT) and showed efficient contrast T2‐enhancing modality. Thus the proposed system could be used as a promising probe for multimodality with optical imaging, computed tomography and magnetic resonance imaging.  相似文献   

13.
A case of phosphor is reported where the cooling rate parameter significantly influences the luminescence property. By quenching the sample after the high‐temperature solid‐state reaction at 1250°C, we successfully prepared the Eu2+‐doped α form Ca3(PO4)2 (α‐TCP:Eu2+) as a new kind of bright cyan‐emitting phosphor. The unusual emission color variation (from cyan to blue) depends on the cooling rate after sintering and Eu2+ doping level as it was observed in the TCP‐based phosphors. By the Rietveld analysis, it is revealed that the cyan‐ and blue‐emitting phosphors are two different TCP forms crystallizing in the monoclinic (space group P21/a, α‐TCP) and the rhombohedral structure (space group R3c, β‐TCP), respectively. Upon 365 nm UV light excitation, α‐TCP:Eu2+ exhibits an asymmetric broad‐band cyan emission peaking at 480 nm, while β‐TCP:Eu2+ displays a relatively narrow‐band blue emission peaking at 416 nm. The Eu2+‐doping in Ca3(PO4)2 shifts the upper temperature limit of the stable structural range of β form from 1125°C to ≥1250°C. Moreover, the crystal structures of α/β‐TCP:Eu2+ were compared in the aspects of compactness and cation site sets. The emission thermal stability of α/β‐TCP:Eu2+ was comparatively characterized and the difference was related to the specific host structural features.  相似文献   

14.
A reddish orange emission Sr2P2O7:Sm3+ phosphor is prepared by the solid‐state reaction method in air, and the crystal structure and luminescence properties of phosphors are investigated. Sr2P2O7:Sm3+ phosphor shows Commission International de I'Eclairage (CIE) chromaticity coordinates (x = 0.5753, y = 0.4147). White light‐emitting diodes (W‐LEDs) fabricated using Sr2P2O7:Sm3+ phosphor etc. show CIE chromaticity coordinates (x = 0.3471, y = 0.3124). These results indicate that Sr2P2O7:Sm3+ phosphor could be a potential suitable reddish orange emitting phosphor candidate for W‐LEDs with excitation of a ~400 nm n‐UV LED chip.  相似文献   

15.
A series of Dy3+/Eu3+ single- and co-doped calcium borosilicate luminescent glasses were prepared by the conventional high temperature melt-quenching method. A compact glass structure is obtained by the addition of Dy3+/Eu3+ ions, which is verified by the physical properties of synthetic glasses. As network modifiers, Dy3+/Eu3+ fill in the interspaces of glass network and contribute to the conversion of [BO3] to [BO4]. Dy3+/Eu3+ co-doped calcium borosilicate glasses can emit white light, which consists of blue, yellow, and red light under 387 nm excitation. The emission spectra and decay curves of the white-emitting glasses have proved the existence of energy transfer. The average lifetime of Dy3+ decreases from 0.251 to 0.165 ms with the increasing Eu3+ concentration. Changing rare earth ions concentration, CIE color coordinates of Dy3+/Eu3+ co-doped glass shifts from cyan to white with increasing excitation wavelength. A white-light emission is obtained when the concentration of Dy3+ and Eu3+ equals to 4% and 2%, respectively. Moreover, the Dy3+/Eu3+ co-doped calcium borosilicate glass shows high-thermal stability and it may be applicable for high-quality white LEDs based on high power near ultraviolet (n-UV) LED chip in the future.  相似文献   

16.
A series of ZrO2/Dy2O3 solid solution nano‐materials with tunable compositions were successfully synthesized by the molten salt–assisted method. Structural characterization results show the positions, intensity, and width of the X‐ray diffraction peaks of products show a regular variation with increasing Dy3+ content which implies the gradually changes of crystal spacing and product size. In addition, all the products are single phase without the coexistence of zirconia and Dy2O3 further demonstrating the perfect formation of targeted solid solutions. Photocatalytic experiments reveal that Zr0.8Dy0.2O2?δ nano‐crystals have pretty photocatalytic degradation activities on Rhodamine B and Methylene blue under visible light irradiations. Reaction mechanism indicates that the excellent photocatalytic activities of Zr0.8Dy0.2O2?δ nano‐crystals result from the special defect structure, smaller size, and larger specific surface area. It follows that Zr0.8Dy0.2O2?δ nano‐crystals are promising visible light–responsive photocatalysts with better prospect in environmental protection and dye wastewater treatment. Moreover, the present molten salt–assisted route might be generalized to synthesize other solid solution nano‐crystals with more complicated structures.  相似文献   

17.
Europium‐doping sodium–aluminosilicate glasses are prepared by melt‐quenching method, in which europium ions were spontaneously reduced from their trivalent to divalent state. The silver was introduced into glasses by Ag+–Na+ ion exchange and the interactions between europium ions and silver species were investigated. Owing to energy transfer (ET) from Ag+/silver aggregates to Eu3+, significant enhancements of Eu3+ emission were observed for 285/350‐nm excitation, respectively. The divalent europium ions promote the formation of silver aggregates in the process of ion exchange.  相似文献   

18.
BaAlxOy:Eu2+,Dy3+ blue‐green phosphor samples were synthesized by a combustion method at the low temperature of 500°C. Phosphor nanocrystallites with high brightness were obtained without significantly changing the crystalline structure of the host. The crystallite sizes determined from the Scherrer equation ranged between 34 and 41 nm. Different volume fractions of the BaAlxOy:Eu2+,Dy3+ powder were then introduced in LDPE polymer. The resulting composites were similarly analyzed and also thermally characterized by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). PL results indicate that the LDPE‐phosphor interface, which is considered to have an influence on the composite behavior, did not significantly change the spectral positions of the phosphor materials, whose major emission peaks occurred at about 505 nm. The improved afterglow results for the composites may have been caused by morphological changes due to increased surface area and defects. Thermal results indicate that the BaAlxOy:Eu2+,Dy3+ particles acted as nucleating centers and enhanced the overall crystallinity in the LDPE nanocomposite while preventing lamellar growth, hence reducing the crystallite sizes in LDPE. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
This work reports on process‐induced impurities in rare‐earth ion: Dy3+‐doped selenide chalcogenide glasses, which are significant materials for active photonic devices in the mid‐infrared region. In particular, the effect of contamination from the silica glass ampoule containment used in chalcogenide glass synthesis is studied. Heat‐treating Dy‐foil‐only, and DyCl3‐only, separately, within evacuated silica glass ampoules gives direct evidence of silica ampoule corrosion by the rare‐earth additives. The presence of [Ga2Se3] associated with [Dy] on the silica glass ampoule that has been contact with the chalcogenide glass during glass melting, is reported for the first time. Studies of 0–3000 ppmw Dy3+‐doped Ge16.5As9Ga10Se64.5 glasses show that Dy‐foil is better than DyCl3 as the Dy3+ additive in Ge‐As‐Ga‐Se glass in aspects of avoiding bulk crystallization, improving glass surface quality and lowering optical loss. However, some limited Dy/Si/O related contamination is observed on the surfaces of Dy‐foil‐doped chalcogenide glasses, as found for DyCl3‐doped chalcogenide glasses, reported in our previous work. The surface contamination indicates the production of Dy2O3 and/or [≡Si‐O‐Dy=]‐containing particles during chalcogenide glass melting, which are potential light‐scattering centers in chalcogenide bulk glass and heterogeneous nucleation agents for α‐Ga2Se3 crystals.  相似文献   

20.
Eu2+‐doped zinc fluoro‐phosphate Zn2[PO4]F was synthesized by the conventional high‐temperature solid‐state reaction. The phase formation was confirmed by X‐ray powder diffraction measurements and the structure refinement. The photoluminescence excitation and emission spectra, and the decay curves were measured. The natures of the Eu2+ emission in inorganic hosts, e.g., the emission and excitation properties, the chromaticity coordinates, the Stokes shifts, the absolute quantum efficiency, and the luminescence thermal stability were reported. Under the excitation of near‐UV light, Eu2+‐doped Zn2[PO4]F presents a narrow blue‐emitting band centered at 423 nm. The thermal stability of the blue luminescence was evaluated by the luminescence intensities as a function of temperature. The phosphor shows an excellent thermal stability on temperature quenching effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号