首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The volatility of silicon‐based ceramics in combustion environments is primarily controlled by the formation of gaseous Si(OH)4. The heat capacities and entropies of this species at 298.15‐2100 K and = 0.1 MPa have been studied with the B3LYP density functional theory for the 6‐311+G(d,p) basis set in different approximations: a harmonic oscillator, an anharmonic oscillator, and with corrections for hindered rotors. Experimentally based Gibbs energies of Si(OH)4(g) at 424‐1661 K have been employed to evaluate the Gibbs energy of formation, , and the entropy, , of Si(OH)4(g) at = 298.15 K and = 0.1 MPa. We found that the QC and “experimental” values are very close for the harmonic and anharmonic oscillator approximations, but not for the “hindered rotor” approximation. This conclusion is also supported by calculations of the OH rotational energy for Si(OH)4 molecule, where the potential barrier was found to exceed 12 kJ/mol. Finally, we recommend the thermodynamic properties of Si(OH)4 in the ideal gas state at = 0.1 MPa over the temperature range of 298‐2100 K.  相似文献   

2.
Lead‐free MnO‐doped 0.955K0.5Na0.5NbO3‐0.045Bi0.5Na0.5ZrO3 (Abbreviated as KNN‐0.045BNZ) ceramics have been prepared by the conventional solid‐state sintering method in reducing atmosphere ( = 1 × 10?10 atm) and air. For ceramics sintered in reducing atmosphere, only Mn2+ ions exist in ceramics who preferentially occupy the cation vacancies in A‐site at = 0.2‐0.4, whereas Mn2+ ions substitute for Zr4+ ions in B‐site to form defects () at > 0.4. For ceramics sintered in air, mixed Mn2+, Mn3+, and Mn4+ ions coexist here. The Mn2+ ions preferentially occupy the cation vacancies in A‐site at = 0.2‐0.4 and then Mn2+ ions substitute for Zr4+ ions in B‐site at > 0.4. Meanwhile, the Mn3+ ions and Mn4+ ions substitute for Nb5+ ions in B‐site to form defects () at = 0.2‐0.8. The (, , and ) dipolar defects show a positive dipolar defect contribution (DDC) to the , whereas the dipolar defects () show a negative DDC to the . The dipolar defects ( ‐ and ) can help improve the temperature stability of . The 0.4% MnO‐doped KNN‐0.045BNZ ceramics sintered in reducing atmosphere show excellent piezoelectric constant d33 = 300 pC/N and 0.2% MnO‐doped KNN‐0.045BNZ ceramics sintered in air possess optimal piezoelectric constant d33 = 290 pC/N.  相似文献   

3.
ZrB2‐60 mol%SiC composite with a eutectic microstructure was oxidized at 1573 to 1873 K with reduced total pressures (Ptot) and low oxygen partial pressures (). The mass change was continuously measured by a thermobalance, and then fit with a multiple paralinear model. Oxidation scale of SiO2/ZrO2+SiO2/ZrO2/ZrB2 was formed at  > 0.13 kPa, whereas only porous ZrO2 remained at  < 0.13 kPa, Ptot < 1.33 kPa and higher than 1773 K. With increasing , the parabolic oxidation constant decreased, whereas the linear oxidation constant increased.  相似文献   

4.
Containerless levitation technique, where the undercooling can be treated as one of the major thermodynamic parameters, was used to study the influence of oxygen partial pressure () on the microstructure and physical properties of rare‐earth orthoferrites RFeO3 (where R = Rare‐earth element) in the ranges from 105 to 10?1 Pa. The microstructure of the as‐solidified samples changed into orthorhombic RFeO3 (o‐RFeO3), metastable hexagonal RFeO3 (h‐RFeO3), and Fe2+‐containing RFe2O4 and a new metastable R3Fe2O7 phases with decreasing . The effect of on the magnetic properties was indicated as that the saturation magnetization gradually increased for R = La to Yb and decreased for R = Lu with decreasing due to the formation of metastable and magnetic phases such as Fe3O4 and Fe.  相似文献   

5.
The rapid densification behavior of 8 mol% Y2O3‐stabilized ZrO2 polycrystalline (8Y‐SZP) powder compacts at the initial stage of pressure sintering (relative density () below 0.92) has been investigated using an electric current‐activated/assisted sintering (ECAS) system. Data points corresponding to a fixed heating rate were extracted from the densification rate () versus ρ and versus temperature (T) curves. These curves were obtained experimentally by consolidation at a fixed current. Under fixed current ECAS, the heating rate () decreases continuously over sintering time. Using a quasi‐ constant heating rate (CHR) method, data points were extracted to plot vs. ρ, vs. T, and ρ vs. T curves at a fixed . The stress exponent (n), estimated from a log‐log plot of grain size (d)‐corrected /ρ and effective stress (σeff) at 1300–1400 K, shows an almost constant value of 1. In addition, the activation energy (Q) for rapid densification, estimated from an Arrhenius plot of d‐corrected /ρ also shows an almost constant value of 350 kJ/mol, which is considerably lower than the previously reported value of the activation energy for Zr4+ lattice diffusion of about 440 kJ/mol. These results suggest that rapid densification of 8Y‐SZP by ECAS seems to proceed by diffusional creep controlled by grain‐boundary diffusion of Zr4+ ions.  相似文献   

6.
A specimen having a stoichiometric composition of KSbO3·(KSb) calcined at 800°C has an R rhombohedral structure (RS), and changes to a Pn cubic structure (CS) when calcined at 1100°C. Finally, a <111>‐oriented rhombohedral phase is formed in the specimen calcined at 1230°C. K/Sb ratio decreases from 1.0 in RS, 0.93 in CS, and finally to 0.85 in <111>‐oriented rhombohedral phases. On the other hand, a specimen having a K‐excess composition of K1.1SbO3 calcined at 800°C shows a RS that is maintained in the K‐excess specimen calcined at 1230°C. The composition of these specimens is very close to KSb. Therefore, the RS with a space group of R is a stable form of KSbO3. The formation of Pn cubic and <111>‐oriented R phases can be explained by the evaporation of K2O during the calcination process at temperatures above 1100°C.  相似文献   

7.
Lead‐free MnO‐doped 0.955K0.5Na0.5NbO3‐0.045Bi0.5Na0.5ZrO3 (abbreviate as KNN‐0.045BNZ) ceramics have been prepared by a conventional solid‐state sintering method in reducing atmosphere. The MnO addition can suppress the emergence of the liquid phase and improve the homogenization of grain size. All ceramics sintered in reducing atmosphere show a two‐phase coexistence zone composed of rhombohedral (R) and tetragonal (T) phase. MnO dopant results in the content increase in R phase and slight increase in Curie temperature TC. For KNN‐0.045BNZ ceramics, Mn2+ ions preferentially occupy the cation vacancies in A‐site to decrease oxygen vacancy concentration for 0.2%‐0.4% MnO content, whereas Mn2+ ions substitute for Zr4+ ions in B‐site to form oxygen vacancies at  0.5. The defect dipole is formed at the moderate concentration from 0.5 to 0.6, which can provide a preserve force to improve the temperature stability of piezoelectric properties for kp and . The Mn0.4 ceramics show excellent electrical properties with quasistatic piezoelectric constant d33 = 300 pC/N, electromechanical coupling coefficient kp = 51.2%, high field piezoelectric constant  = 430 pm/V (at Emax = 25 kV/cm) and TC = ~345°C, insulation resistivity ρ  =  6.13 × 1011 Ωcm.  相似文献   

8.
The oxygen nonstoichiometry of La2Ni0.95Al0.05O4.025 + δ (LNAO) is measured as a function of oxygen partial pressure (pO2) and temperature by coulometric titration method and thermogravimetric analysis (TGA) in 800°C–1000°C temperature range and 10?16‐1 atm pO2 range. The partial molar quantities for mixing of oxygen were calculated and results were compared with the literature results on La2NiO4 + δ (LNO). The variation in activity coefficient of holes versus oxygen nonstoichiometry illustrated an early positive deviation of the activity coefficient of holes from unity, leading to  ≈  7 at δ  ≈  0.08, which was lower than the literature value of  ≈  14 for La2NiO4  +  δ at δ  ≈  0.08, indicating lesser deviation of LNAO from ideal solution behavior. The effective mass of holes () was 1.02–1.21 times the rest mass (mo), which indicated the band‐like conduction and allowed the effect of the small degree of polaron hopping to be ignored. The comparison of oxygen nonstoichiometry and partial molar quantities showed that incorporation of interstitial oxygen is less favorable in LNAO in comparison to LNO.  相似文献   

9.
This work determines the self‐diffusion coefficients of indium in TiO2 single crystal (rutile). Diffusion concentration profiles were imposed by deposition of a thin surface layer of InCl3 on the TiO2 single crystal and subsequent annealing in the temperature range 1073–1573 K. The diffusion‐induced concentration profiles of indium as a function of depth were determined using secondary ion mass spectrometry (SIMS). These diffusion profiles were used to calculate the self‐diffusion coefficients of indium in the polycrystalline In2TiO5 surface layer and the TiO2 single crystal. The temperature dependence of the respective diffusion coefficients, in the range 1073–1573 K, can be expressed by the following formulas: and The obtained activation energy for bulk diffusion of indium in rutile (316 kJ/mol) is similar to that of zirconium in rutile (325 kJ/mol). The determined diffusion data can be used in selection of optimal processing conditions for TiO2–In2O3 solid solutions.  相似文献   

10.
The impact of the (Ba + Sr)/Ti (A/B) ratio on the microwave‐tunable characteristics of diffuse phase transition (DPT) ferroelectric Ba0.6Sr0.4TiO3 (0.6‐BST) ceramics was investigated. The reduction in the lattice constant with increasing nonstoichiometry was attributed to introduced partial Schottky defects, i.e., and . The magnitude of the dielectric constant, ε′, at room temperature in the absence of an applied electric field was governed by the shift in the dielectric maximum temperature, Tm, because Tm was close to room temperature for the 0.6‐BST. The dielectric loss, tanδ, diminished as the ε′ decreased for 0.98≤A/B≤1.05, while the tanδ was much higher for A/B=0.95 having the greatest A‐site vacancy loading. The negatively charged and were mainly compensated by oxygen vacancies and likely partly compensated by holes, h?, which contributed to the electrical conduction. The tunability, T, at 100 MHz was almost constant at 20%–25% for A/B≥1.00 despite the reduction of the ε′, whereas T decreased for A/B<1.00 to ca. 10% for A/B=0.95 having the greatest A‐site vacancy loading. The results implied that the for larger A/B values was more efficient in generating nucleation sites in the polar nanoregions (PNRs) than the for smaller A/B values, thereby providing greater dipole polarization. Consequently, the figure of merit, FOM, reached its maximum of 250 at A/B=0.9875, which was ca. 155% higher than that of the stoichiometric BST.  相似文献   

11.
Aluminum oxide was deposited on the surface of 3 mol% yttria‐stabilized tetragonal zirconia polycrystals (3Y‐TZP). The samples were annealed at temperatures from 1523 to 1773 K. Diffusion profiles of Al in the form of mean concentration vs. depth in B‐type kinetic region were investigated by secondary ion mass spectroscopy. The experimental results for the lattice diffusion (DB) and grain boundary diffusion (DGB) are as follows: and where δ is the grain‐boundary width and s is the segregation factor.  相似文献   

12.
In this work, the nonstoichiometric 0.99Bi0.505(Na0.8K0.2)0.5‐xTiO3‐0.01SrTiO3 (BNKST(0.5‐x)) ceramics with x=0‐0.03 were synthesized by conventional solid‐state reaction method. The composition‐induced structural transitions were investigated by Raman spectra, dielectric analyses, and electrical measurements. It is found that the relaxor phase can be induced through the modulation of the (Na, K) content. The (Na, K) deficiency in BNKST(0.5‐x) ceramics favors a more disordered local structure and can result in the loss of long‐range ferroelectricity. The x=0.015 critical composition possesses relatively high positive strain Spos of 0.42% and large signal piezoelectric constant d33* of 479 pm V?1 at 6 kV mm?1, along with the good temperature (25‐120°C) and frequency (1‐20 Hz) stability. The recoverable large strain responses in nonstoichiometric ceramics can be attributed to the reversible relaxor‐ferroelectric phase transition, which is closely related to the complex defects (, , and ) and the local random fields. This work may be helpful for the exploration of high‐performance NBT‐based lead‐free materials by means of A‐site compositional modification.  相似文献   

13.
Phase equilibria were experimentally investigated in the MgO–MnOx and the ZrO2–MgO–MnOx systems for different oxygen partial pressures by powder X‐ray diffractometry, scanning electron microscopy, and differential thermal analysis. The formation of two compositionally and structurally different β‐spinel solid solutions was observed in the MgO–MnOx system in air in the temperature interval 1473–1713 K. Isothermal sections of the ZrO2–MgO–MnOx phase diagram were constructed for air conditions ( = 0.21 bar) at 1913, 1813, 1713, 1613, and 1523 K. In addition, isothermal sections at 1913 and 1523 K were constructed for = 10?4 bar. The β‐spinel and halite phases of the MgO–MnOx system were found to dissolve up to 2 and 5 mol% ZrO2. A continuous c‐ZrO2 solid solution forms between the boundary ZrO2–MnOx and ZrO2–MgO systems. It stabilizes in the ZrO2–MgO–MnOx system down to at least 1613 K in air and down to 1506 K at = 10?4 bar.  相似文献   

14.
A system for mass relaxation studies based on a gallium phosphate piezocrystal microbalance has been developed, built, and successfully used to characterize a representative mixed ionic and electronic conducting material. The apparatus is constructed to achieve reactor gas exchange times as short as 2 seconds and temporal resolution in mass measurement of 0.1 seconds. These characteristics enabled evaluation of mass relaxations that occurred on the 6 seconds time scale. Proof of concept for materials characterization capabilities of the system was carried out using 10% praseodymium‐doped cerium oxide (PCO), a material that undergoes, at selected temperatures and oxygen partial pressures, changes in mass but not in conductivity. Thin films were deposited on the piezocrystals via pulsed laser deposition (PLD). Mass relaxation curves were collected at 700°C upon application of a small step change in oxygen partial pressure, . Using two different films, the surface reaction constant, kS, was obtained over the range from 10?4 to 0.1 atm. Its value is found to vary between 9.7 × 10?6 and 1.7 × 10?4 cm/s, displaying a power law dependence on , with a law exponent of 0.67 ± 0.02, as averaged over the two sets of results. This steep dependence of kS on is surprisingly independent of a change in dominant defect type within the range of measurement.  相似文献   

15.
Some of the renewed interest in transition metal diborides (MB2, = Ti/Zr/Hf) arises from their potential use as matrices in ultrahigh‐temperature ceramic matrix composites (UHTCMCs). Crucial to the understanding of such composites is the study of the fiber/matrix interfaces, which in turn requires a deep knowledge of the surface structures and the thermodynamics of the matrix material. Here we investigate the surface stability of MB2 compounds by first‐principles calculations. Five surfaces are stabilized when going from a M‐rich to a B‐rich environment, respectively (0001)M, (100)M, (101)B(M), (113)M and (0001)B, with the highly stable (100)M, (101)B(M) and (113)M surfaces being discussed here for the first time. The mechanism behind the surface stability is analyzed in terms of cleavage energy, surface strain and surface bonding states. Our results provide important information for a better understanding of the most likely surfaces exposed to the fibers in UHTCMCs, thereby for the construction of reliable interfaces and ultimately UHTCMCs models.  相似文献   

16.
195Pt solute diffusion coefficients in undoped single‐crystal rutile TiO2 have been determined parallel to the c‐axis over the temperature range of 1073–1523 K and oxygen partial pressure of 101 kPa. This has yielded the following temperature dependence: On the basis of this result, it has been concluded that 195Pt diffuses via an interstitial mechanism involving rapid transport parallel to the c‐axis through open interstitial diffusion channels. While other divalent cations have also displayed diffusion via the same mechanism, and report diffusion rates that greatly exceed that for cation self‐diffusion, the overall rate of 195Pt diffusion is slow. This has been attributed to the size of Pt2+ (0.80 Å) which is comparative to the dimension of interstitial channels (0.77 Å) through which transport is believed to be taking place.  相似文献   

17.
Calcium‐substituted lanthanum ferrites (La1?xCaxFeO3?δ x = 0, 0.1, 0.2, 0.3, 0.4) were synthesized in air and subsequently decomposed in reducing atmospheres. The partial pressure of oxygen () was controlled by varying the H2/H2O ratio by bubbling hydrogen/argon mixtures through water baths at controlled temperatures. Three regions of mass loss were identified as the was reduced, two of which were determined to be associated with decomposition reactions. Calcium was shown to decrease the thermal stability of the perovskite compound, but rather than incrementally increasing the required for decomposition proportional to calcium concentration, all samples partially decomposed at a single . The extent of the partial decomposition was dependent on the amount of calcium substitution and temperature. The perovskite phase remaining after the partial decomposition was found to fully decompose at the same oxygen partial pressure as pure lanthanum ferrite.  相似文献   

18.
It was determined that the mean grain boundary radius of curvature in 3 mol% yttria‐stabilized zirconia isothermally annealed without and with a DC electric field  = 18 V/cm was uniquely proportional to the mean linear intercept grain size , the proportionality constant α = 3/2 being in accord with the Rios‐Fonseca stereological model.  相似文献   

19.
Dense symmetric membranes of CaTi0.85?xFe0.15MnxO3?δ (x = 0.1, 0.15, 0.25, 0.4) are investigated in order to determine the optimal Mn dopant content with respect to highest O2 flux. O2 permeation measurements are performed as function of temperature between 700°C–1000°C and as function of the feed side ranging between 0.01 and 1 bar. X‐ray photoelectron spectroscopy is utilized to elucidate the charge state of Mn, and synchrotron radiation X‐ray powder diffraction (SR‐XPD) is employed to investigate the structure symmetry and cell volume of the perovskite phase at temperatures up to 800°C. The highest O2 permeability is found for x = 0.25 over the whole temperature and ranges, followed by x = 0.4 above 850°C. The O2 permeability for x = 0.25 reaches 0.01 mL(STP) min?1 cm?1 at 925°C with 0.21 bar feed side and Ar sweep gas. X‐ray photoelectron spectroscopy indicates that the charge state of Mn changes from approx. +3 to +4 when x > 0.1, which implies that Mn mainly improves electronic conductivity for x > 0.1. The cell volume is found to decrease linearly with Mn content, which coincides with an increase in the activation energy of O2 permeability. These results are consistent with the interpretation of the temperature and dependency of O2 permeation. The sintering behavior and thermal expansion properties are investigated by dilatometry, which show improved sinterability with increasing Mn content and that the thermal expansion coefficient decreases from 12.4 to 11.9 × 10?6 K?1 for x = 0 and x = 0.25, respectively.  相似文献   

20.
SrTiZrxO3 (x = 0, 0.002, 0.006, 0.01, and 0.014) ceramics with a weak temperature‐dependent giant permittivity (>104) and a very low dielectric loss (<0.01) were fabricated using the conventional solid‐state reaction method by sintering them in N2 at 1500°C. With increasing Zr content, the permittivity decreased from approximately 48 000 to 18 000 and the dielectric loss decreased from approximately 0.005 to 0.003. According to the XRD, XPS, and ac conductivity analysis, the dielectric properties of pure SrTiO3 ceramics sintered in N2 were due to the existence of the giant defect dipoles generated by the fully ionized oxygen vacancies and Ti3+ ions, while the dielectric properties of SrTiZrxO3 (x > 0) ceramics were also influenced by the defect dipoles (). The giant permittivity and low dielectric loss phenomenon could be explained by giant defect dipoles related to oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号