首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissolution enthalpy, ΔHDS, and the formation enthalpy, ΔHf,ox, of bulk lutetium‐doped cerium oxide (LuDC) were studied at 701°C in molten sodium molybdate. For the composition range of Ce1?XLuXO2?X/2, studied 0 ≤  0.3, the ΔHDS decreases linearly and smoothly with lutetium content according to ΔHDS, kJ/mol = 73.5(1.0)?165.1(5.5)·x). The enthalpy of formation, ΔHf,ox, becomes more exothermic linearly with lutetium content. No anomaly in ΔHf,ox is observed at low Lu2O3 concentration as reported previously for several other rare‐earth‐doped ceria systems, suggesting possible differences in clustering and microstructure, which may also be related to difference in processing conditions.  相似文献   

2.
In this paper, the Li2/3(1?x)Sn1/3(1?x)MgxO (LSMxO) ceramic systems were prepared by solid‐state reaction using novel atmosphere‐controlled sintering (x = 0‐4/7). Pure Li2SnO3 was observed for x = 0, the Li2Mg3SnO6 and Li2SnO3 coexisted for x = 1/7, and the coexistence of three kinds of phases was detected for x = 1/5 and 1/4, including Li4MgSn2O7 impurity phase. Pure Li2Mg3SnO6‐like phase with cubic rock salt structure in Fm‐3m space group was obtained in the range of 1/3‐4/7. All samples showed well‐dense and smooth microstructures. The microwave dielectric properties highly depended on the phase composition, bond valence, FWHM of Raman spectrum, Raman shift, average grain sizes, and octahedral distortion. The LSMxO ceramics sintered at 1250°C for 5 hours possessed excellent comprehensive properties of εr = 15.43, Q×f = 80 902 GHz and τf = +5.61 ppm/°C for x = 1/7. Typically, the LSMxO ceramics sintered at 1350°C for 5 hours showed a maximum Q × f of 168 330 GHz for x = 1/2.  相似文献   

3.
Lead‐free piezoceramics with the composition (1?x)(K1?yNay)NbO3‐x(Bi1/2Na1/2)ZrO3 (KNyN‐xBNZ) were prepared using a conventional solid‐state route. X‐ray diffraction, Raman spectroscopy, and dielectric measurements as a function of temperature indicated the coexistence of rhombohedral (R) and tetragonal (T) phase, typical of a morphotropic phase boundary (MPB) as the BNZ concentration increased and by adjusting the K/Na ratio. High remnant polarization (Pr=24 μC/cm2), piezoelectric coefficient (d33=320 pC/N), effective piezocoefficient ({d_{33}^*}=420 pm/V), coupling coefficient (kp=48%), and high strain (S=0.168%) were obtained at room temperature, but significant deterioration of Pr, {d_{33}^*}, and kp were observed by increasing from room temperature to 160°C (17.5 μC/cm2, 338 pm/V, and 32%, respectively) associated with a transition to a purely T phase. Despite these compositions showing promise for room‐temperature applications, the deterioration in properties as a function of increasing temperature poses challenges for device design and remains to be resolved.  相似文献   

4.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

5.
Polyethylene oxide (PEO)/LixV2‐δO4‐δ nanocomposites were prepared in aqueous solution. Characterization of the nanocomposites using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), powder X‐ray diffraction (XRD), and Fourier transform infrared spectrum (FTIR) shows that polymer chains intercalate inorganic host lamella and exhibit lattice expansion along the stacking direction of 4.2 Å. A possible model for the structure of the nanocomposite is also provided. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2162–2166, 2001  相似文献   

6.
Crack opening displacements were evaluated on semi‐elliptical indentation cracks in lead‐free (1?x)(Na1/2Bi1/2)TiO3xBaTiO3 piezoceramics and a commercially available PZT ceramic. The observed crack‐tip toughness of NBT‐xBT was found to be substantially higher than for PZT. Two evaluations for the crack opening displacement were demonstrated and contrasted: A more elaborate three‐term‐approximation and a pragmatic utilization of the Irwin parabola.  相似文献   

7.
Validity of mixture rule for dielectrics in series configuration and the correlation between microstructure and electrical properties in bilayered BaTiO3/BaTi1?xZrxO3 ceramics were studied. Samples were obtained from BaTi1?xZrxO3 (BTZx) nanopowder synthesized by the polymeric precursor technique and had their microstructure, dielectric, piezoelectric, and ferroelectric properties investigated. These bilayered ceramics' properties were compared to the properties of homogeneous BTZx samples. And, also, the formers' electrical permittivities were compared with the predictions of the simple mixture rule. According to the results, the microstructures of the layers do not differ from the microstructure of the corresponding homogeneous BTZx ceramic. And pyroelectric coefficient measurements show that the electrical properties of the interface do not contribute to the functional properties of the bilayered samples. Nevertheless, on increasing Zr4+, the agreement between the experimental and the predicted permittivity of the bilayered ceramics is gradually reduced, mainly at temperatures where the permittivity is governed by the response of the layer containing Zr4+. As a mechanical joint between the layers, the interface induces stresses during sintering due to thermal mismatch between compositions, thereby affecting the bilayers' electrical properties. Our results show that interface's mechanical effects compromise the functional properties of layered ferroelectric ceramics.  相似文献   

8.
D. Xie  W. Guo  R. Guo  Z. Liu  D. Sun  L. Meng  M. Zheng  B. Wang 《Fuel Cells》2016,16(6):829-838
A series of iron‐based perovskite oxides BaFe1−xCuxO3−δ (x = 0.10, 0.15, 0.20 and 0.25, abbreviated as BFC‐10, BFC‐15, BFC‐20 and BFC‐25, respectively) as cathode materials have been prepared via a combined EDTA‐citrate complexing sol‐gel method. The effects of Cu contents on the crystal structure, chemical stability, electrical conductivity, thermal expansion coefficient (TEC) and electrochemical properties of BFC‐x materials have been studied. All the BFC‐x samples exhibit the cubic phase with a space group Pm3m (221). The electrical conductivity decreases with increasing Cu content. The maximum electrical conductivity is 60.9 ± 0.9 S cm−1 for BFC‐20 at 600 °C. Substitution of Fe by Cu increases the thermal expansion coefficient. The average TEC increases from 20.6 × 10−6 K−1 for BFC‐10 to 23.7 × 10−6 K−1 for BFC‐25 at the temperature range of 30–850 °C. Among the samples, BFC‐20 shows the best electrochemical performance. The area specific resistance (ASR) of BFC‐20 on SDC electrolyte is 0.014 Ω cm2 at 800 °C. The single fuel cell with the configguration of BFC‐20/SDC/NiO‐SDC delivers the highest power density of 0.57 W cm−2 at 800 °C. The favorable electrochemical activities can be attributed to the cubic lattice structure and the high oxygen vacancy concentration caused by Cu doping.  相似文献   

9.
Monoclinic (α) and hexagonal (β) polypropylene (α‐ and β‐PP) were stained in the vapor of a ruthenium tetroxide solution prepared in situ. The effect of staining on the fusion behavior was investigated using a DSC. A staining duration between 10 and 24 h was found suitable for obtaining a good electron contrast between the crystalline and amorphous regions for TEM examination without causing severe damage to the crystals. The spherulites of the water‐quenched α‐PP were found to be composed of very fine cross‐hatched lamellae whose long period was about 10 nm. In comparison, the β‐PP spherulites crystallized isothermally at 130°C had a category 2 morphology and the lamellae have a long period of 20 nm. The morphology of the spherulite boundary varied depending on the contact angle between the lamellae of the neighboring spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1529–1538, 1999  相似文献   

10.
An efficient catalytic asymmetric hydrogenation of racemic α‐arylcyclohexanones with an ethylene ketal group at the 5‐position of the cyclohexane ring via dynamic kinetic resolution has been developed, giving chiral α‐arylcyclohexanols with two contiguous stereocenters with up to 99% ee and >99:1 cis/trans‐selectivity. Using this highly efficient asymmetric hydrogenation reaction as a key step, (−)‐α‐lycorane was synthesized in 19.6% overall yield over 13 steps from commercially available starting material.  相似文献   

11.
γ‐Fluoro‐α, β‐unsaturated carboxylic esters 7a, 7b and 7d and 4‐fluoro‐4‐phenylbut‐3‐enoic ester ( 8 ) are obtained by two alternative pathways from 2‐fluoro aldehydes 5a—d , either by Horner—Wadsworth—Emmons reaction or by Wittig reaction. The aldehydes 5a—d are prepared by Swern oxidation of the corresponding fluorohydrins 4a—d . These are available from α‐olefins by bromofluorination, bromineby‐acetate replacement and subsequent hydrolysis.  相似文献   

12.
Crystal structure and cation distribution of nanocrystalline SrFe1?xTixO3?δ (0 ≤ ≤ 0.3) synthesized by combined high‐energy ball milling and solid‐state reactions are investigated using Neutron powder diffraction and Mössbauer spectroscopy. Ti doping stabilizes the single phase tetragonal structure with I4/mmm space group up to x = 0.3. The neutron and Mössbauer data confirm that Fe exists in three different sites both crystallographically as well as magnetically in all the four compositions. The cation distribution at various sites is established through Rietveld refinement.  相似文献   

13.
Spinel‐structured (Zn1?x(Li2/3Ti1/3)x)2TiO4 (x = 0–1) microwave dielectric ceramics were manufactured via a conventional mixed‐oxide method. The X‐ray diffraction and Raman spectra revealed that a disordered face‐centered cubic phase was found in the composition range of x < 0.5, and an ordered primitive cubic spinel solid solution was achieved as x was beyond 0.5. Such a disorder–order transition near x = 0.5 was accompanied by the variation of composition‐induced cation occupancy. The Q × f value first kept increasing up to ~160 000 (GHz) in disordered ceramics, and then sharply decreased as an ordered structure appeared at x ≥ 0.5. An obvious decrease in τf value was also accompanied by the appearance of an ordered structure. The minimum τf value (~ ?20 ppm/°C) was obtained in the x = 0.75 sample with the highest structural order degree. These results demonstrated that microwave dielectric properties of current spinel ceramics could be successfully modified by adjusting their structural order degree, which could be appropriately adopted for the design of spinel‐structured materials with favorable properties.  相似文献   

14.
α‐Pinene enantiomers were sorbed in Nafion® membranes. The membranes included a commercial extruded Nafion® 115 membrane as well as membranes prepared by casting a Nafion® solution, evaporating the solvent, and a thermal treatment at different temperatures. The microstructure of membranes was studied by small‐angle and wide‐angle X‐ray scattering, and magic‐angle spinning nuclear magnetic resonance spectroscopy. The change of membrane weight during the sorption process was determined with a sorption microbalance. Noticeable differences concerning the sorption behavior of the various membranes could be stated. The sorption of (+)‐α‐pinene and (?)‐α‐pinene in an extruded Nafion® membrane turned out to be rather low.  相似文献   

15.
Ceramics of composition (1?x)BaTiO3xBi(Zn1/2Ti1/2)O3 (BT‐BZT) were prepared by solid‐state synthesis; they have been shown to exhibit excellent properties suited for high‐temperature dielectric applications. The X‐ray diffraction data showed a single‐phase perovskite structure for all the compositions prepared (x ≤ 0.1 BZT). The compositions with less than 0.075 BZT exhibited tetragonal symmetry at room temperature and pseudo‐cubic symmetry above it. Most notably, a significant improvement in insulation properties was measured with the addition of BZT. Both low‐field AC impedance and high‐field direct DC measurements indicated an increase in resistivity of at least two orders of magnitude at 400°C with the addition of just 0.03 BZT (~107 Ω‐cm) into the solid solution as compared to pure BT (~105 Ω‐cm). This effect was also evident in dielectric loss data, which remained low at higher temperatures as the BZT content increased. In conjunction with band gap measurements, it was also concluded that the conduction mechanism transitioned from extrinsic for pure BT to intrinsic for 0.075 BZT suggesting a change in the fundamental defect equilibrium conditions. It was also shown that this improvement in insulation properties was not limited to BT‐BZT, but could also be observed in the paraelectric SrTiO3–BZT system.  相似文献   

16.
Efficient methods for the direct arylation and deacylative arylation of β‐ketophosphonates with iodoarenes in presence of a copper(I) or a copper(II) salt as the catalysts have been developed. The corresponding α‐arylphosphonates were obtained in high yields. A tentative mechanism for the deacylative arylation reaction was proposed on the basis of the experimental data.  相似文献   

17.
Copolymerization of ethylene with 1‐octadecene was studied using [η51‐C5Me4‐4‐R1‐6‐R‐C6H2O]TiCl2 [R1 = tBu (1), H (2, 3, 4); R = tBu (1, 2), Me (3), Ph (4)] as catalysts in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]. The effect of the concentration of comonomer in the feed and Al/Ti molar ratio on the catalytic activity and molecular weight of the resultant copolymer were investigated. The substituents on the phenyl ring of the ligand affect considerably both the catalytic activity and comonomer incorporation. The 1 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system exhibits the highest catalytic activity and produces copolymers with the highest molecular weight, while the 2 /Al(i‐Bu)3/[Ph3C][B(C6F5)4] catalyst system gives copolymers with the highest comonomer incorporation under similar conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Single‐phase monoclinic aluminum–gallium oxide powders, β?(AlxGa1?x)2O3, have been produced by solution combustion synthesis for Al fraction 0 ≤ x < 0.8. α?(AlxGa1?x)2O3 is observed for x = 1, with mixed α + β for x = 0.8. The contraction in lattice parameters and increase in band gap with increasing Al concentration were characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS), respectively, and are compared with a first‐principles density‐functional theory calculation. A novel filtering procedure is described to reduce the uncertainty involved in measuring band gap using photoemission, and to remove asymmetry in XPS line shapes caused by differential charging of loose powder. The lattice parameters vary linearly with Al fraction, but exhibit a change in slope at x = 0.5 that is attributed to the difference between aluminum occupying tetrahedral and octahedral sites in the monoclinic lattice. The band gap changes linearly with local stoichiometry, including increasing when aluminum content at the surface is enriched relative to the interior, with a range of over 1.8 eV.  相似文献   

19.
20.
Tantalum carbides are commonly processed by hot pressing, canned hot‐isostatic‐pressing, or spark plasma sintering because of their high melting temperatures and low diffusivities. This paper reports processing of dense ζ‐Ta4C3?x by reaction sintering of a Ta and TaC powder mixture (C/Ta atomic ratio = 0.66). ζ‐Ta4C3?x is of interest due to its rhombohedral (trigonal) crystal structure that may be characterized as a polytype with both face‐centered‐cubic and hexagonal‐close‐packed Ta stacking sequences interrupted by stacking faults and missing carbon layers. This structure leads to easy cleaving on the basal planes and high fracture toughness. A key step in processing is the hydrogenation of the Ta powder to produce β‐TaHx, a hard and brittle phase that enables efficient comminution during milling and production of small, equiaxed Ta particles that can be packed to high green density with the TaC powder. Studies of phase evolution by quantitative X‐ray diffraction during sintering revealed several intermediate reactions: (1) decomposition of β‐TaHx to Ta; (2) diffusion of C from γ‐TaC to Ta leading to the formation of α‐Ta2Cy' with the kinetics described by the Avrami equation with an exponent, = 0.5, and an activation energy of 219 kJ/mole; (3) equilibration of α‐Ta2Cy' and γ‐TaC0.78 phases; and (4) formation of ζ‐Ta4C2.56 from the equilibrated α‐Ta2C and γ‐TaC0.78 phases with the kinetics characterized by a higher Avrami exponent ( 3) and higher activation energy (1007 kJ/mole). The sintered material contained ~0.86 weight fraction ζ‐Ta4C2.56 and ~0.14 weight fraction γ‐TaC0.78 phases. The microstructure showed evidence of nucleation and growth of the ζ‐Ta4C2.56 phase in both the α‐Ta2C and γ‐TaC0.78 parent phases with distinct difference in the morphology due to the different number of variants of the habit plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号