首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Exocrine glands, e.g., salivary and pancreatic glands, play an important role in digestive enzyme secretion, while endocrine glands, e.g., pancreatic islets, secrete hormones that regulate blood glucose levels. The dysfunction of these secretory organs immediately leads to various diseases, such as diabetes or Sjögren's syndrome, by poorly understood mechanisms. Gland‐related diseases have been studied by optical microscopy (OM), and at higher resolution by transmission electron microscopy (TEM) of Epon embedded samples, which necessitates hydrophobic sample pretreatment. Here, we report the direct observation of tissue in aqueous solution by atmospheric scanning electron microscopy (ASEM). Salivary glands, lacrimal glands, and pancreas were fixed, sectioned into slabs, stained with phosphotungstic acid (PTA), and inspected in radical scavenger d ‐glucose solution from below by an inverted scanning electron microscopy (SEM), guided by optical microscopy from above to target the tissue substructures. A 2‐ to 3‐µm specimen thickness was visualized by the SEM. In secretory cells, cytoplasmic vesicles and other organelles were clearly imaged at high resolution, and the former could be classified according to the degree of PTA staining. In islets of Langerhans, the microvascular system used as an outlet by the secretory cells was also clearly observed. Microvascular system is also critically involved in the onset of diabetic complications and was clearly visible in subcutaneous tissue imaged by ASEM. The results suggest the use of in‐solution ASEM for histology and to study vesicle secretion systems. Further, the high‐throughput of ASEM makes it a potential tool for the diagnosis of exocrine and endocrine‐related diseases.  相似文献   

2.
Optical microscopy is generally the first choice to observe microbes and cells. However, its resolution is not always sufficient to reveal specific target structures, such as flagella and pili, which are only nanometers wide. ASEM is an attractive higher resolution alternative, as the sample is observed in aqueous solution at atmospheric pressure. Sample pretreatment for ASEM only comprises simple tasks including fixation, gold labeling, and reagent exchange, taking less than 1 h in total. The lengthy sample pretreatments often required for more classical electron microscopies, such as embedding and dehydration, are unnecessary, and native morphology is preserved. In this study, positively charged nanogold particles were used to label the surfaces of bacteria and cultured animal cells, exploiting their net negative surface charge. After gold enhancement to increase the size of the nanogold particles, ASEM imaging of the bacteria in aqueous solution revealed pili and delicate spiral flagella. This natural shape contrasts starkly with images of dried flagella recorded by standard SEM. Positively charged nanogold labeled the plasma membrane of cultured COS7 cells, and after enhancement allowed filopodia as thin as 100 nm in diameter to be clearly visualized. Based on these studies, ASEM combined with positively charged nanogold labeling promises to become an important tool for the study of cell morphology and dynamics in the near future. Microsc. Res. Tech. 77:153–160, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
We have employed field-emission secondary electron microscopy (FESEM) for morphological evaluation of freeze-fractured frozen-hydrated renal epithelial LLC-PK1 cells prepared with our simple cryogenic sandwich-fracture method that does not require any high-vacuum freeze-fracture instrumentation (Chandra et al. (1986) J. Microsc. 144 , 15–37). The cells fractured on the substrate side of the sandwich were matched one-to-one with their corresponding complementary fractured faces on the other side of the sandwich. The FESEM analysis of the frozen-hydrated cells revealed three types of fracture: (i) apical membrane fracture that produces groups of cells together on the substrate fractured at the ectoplasmic face of the plasma membrane; (ii) basal membrane fracture that produces basal plasma membrane-halves on the substrate; and (iii) cross-fracture that passes randomly through the cells. The ectoplasmic face (E-face) and protoplasmic face (P-face) of the membrane were recognized based on the density of intramembranous particles. Feasibility of fractured cells was shown for intracellular ion localization with ion microscopy, and fluorescence imaging with laser scanning confocal microscopy. Ion microscopy imaging of freeze-dried cells fractured at the apical membrane revealed well-preserved intracellular ionic composition of even the most diffusible ions (total concentrations of K+, Na+ and Ca+). Structurally damaged cells revealed lower K+ and higher Na+ and Ca+ contents than in well-preserved cells. Frozen-freeze-dried cells also allowed imaging of fluorescently labelled mitochondria with a laser scanning confocal microscope. Since these cells are prepared without washing away the nutrient medium or using any chemical pretreatment to affect their native chemical and structural makeup, the characterization of fracture faces introduces ideal sample types for chemical and morphological studies with ion and electron microscopes and other techniques such as laser scanning confocal microscopy, atomic force microscopy and near-field scanning optical microscopy.  相似文献   

4.
Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields.  相似文献   

5.
We examined CD133 distribution in a human hepatoblastoma cell line (HuH‐6 clone 5). We directly observed the cultured cells on a pressure‐resistant thin film (silicon nitride thin film) in a buffer solution by using the newly developed atmospheric scanning electron microscope (ASEM), which features an open sample dish with a silicon nitride thin film window at its base, through which the scanning electron microscope beam scans samples in solution, from below. The ASEM enabled observation of the ventral cell surface, which could not be observed using standard SEM. However, observation of the dorsal cell surface was difficult with the ASEM. Therefore, we developed a new method to observe the dorsal side of cells by using Aclar® plastic film. In this method, cells are cultured on Aclar plastic film and the dorsal side of cells is in contact with the thin silicon nitride film of the ASEM dish. A preliminary study using the ASEM showed that CD133 was mainly localized in membrane ruffles in the peripheral regions of the cell. Standard transmission electron microscopy and scanning electron microscopy revealed that CD133 was preferentially concentrated in a complex structure comprising filopodia and the leading edge of lamellipodia. We also observed co‐localization of CD133 with F‐actin. An antibody against CD133 decreased cell migration. Methyl‐β‐cyclodextrin treatment decreased cell adhesion as well as lamellipodium and filopodium formation. A decrease in the cholesterol level may perturb CD133 membrane localization. The results suggest that CD133 membrane localization plays a role in tumor cell adhesion and migration. Microsc. Res. Tech. 76:844–852, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
James A. Poston 《Scanning》1995,17(5):316-321
Relatively low-cost modifications to standard commercial scanning electron microscopes (SEM) that allow accurate exposure of sample(s) to noncorrosive gases at ambient and high temperatures are outlined. Energy-dispersive spectroscopic analysis of sample(s) exposed to noncorrosive gases at high temperatures is demonstrated. Gas exposure is limited to pressures of less than 10?4 torr (1.33 × 10?2 Pa) as a result of limitations on SEM system operation and SEM safety interlocks. Gases are limited to noncorrosive types as a result of potential damage to system detection devices and internal mechanical parts.  相似文献   

7.
We have tested possibilities and limitations of confocal laser scanning microscopy to study the morphology of pollen and spores and inner structure of sporoderms. As test objects, we used pollen grains of the modern angiosperm Ribes niveum (Grossulariaceae) and Datura metel (Solanaceae), fossil angiosperm pollen grains of Pseudointegricorpus clarireticulatum and Wodehouseia spinata dated to the Late Cretaceous, fossil gymnosperm pollen grains of Cycadopites‐type dated to the Middle Jurassic, and fossil megaspores Maexisporites rugulaeferus, M. grosstriletus, and Trileites sp. dated to the Early Triassic. For comparative purpose, we studied the same objects with application of conventional light, scanning electron (to entire pollen grains and spores or to semithin sections of their walls), or transmission electron microscopy. The resolution of confocal microscope is much lower than that of electron microscopes, as are its abilities to reconstruct the surface patterns and inner structure. On the other hand, it can provide information that is unreachable by other microscopical methods. Thus, the structure of endoapertures in angiosperm pollen grains can be directly observed. It is also helpful in studies of asymmetrical pollen and pollen grains bearing various appendages and having complicated exine structure, because rotation of 3‐D reconstructions allows one to examine all sides and structures of the pollen grain. The exact location of all visible and concealed structures in the sporoderm can be detected; this information helps to describe the morphology and inner structure of pollen grains and to choose necessary directions of further ultrathin sectioning for a transmission electron microscopical study. In studies of fossil pollen grains that are preserved in clumps and stuck to cuticles, confocal microscope is useful in determining the number of apertures in individual pollen grains. This can be done by means of virtual sections through 3‐D reconstructions of pollen grains. Fossil megaspores are too large and too thick‐walled objects for a confocal study; however, confocal microscope was able to reveal a degree of compression of fossil megaspores, the presence of a cavity between the outer and inner sporoderm layers, and to get some information about sporoderm inner structure.  相似文献   

8.
Abstract

Mesocellular foam silica was prepared by a hydrothermal synthesis protocol. The surface and pore structure of mesocellular foam silica were characterized by low temperature nitrogen adsorption isotherms, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared (FT-IR) spectroscopy. The methylene blue was adsorbed by the synthetic mesocellular foam silica; the optimized adsorption conditions were evaluated and the maximum adsorption capacity of methylene blue by mesocellular foam silica was determined to be 215.5?mg g?1. The kinetics of the adsorption of methylene blue by mesocellular foam silica were in accordance with a quasi-second-order kinetic equation. The results were analyzed by Langmuir and Freundlich adsorption isotherm models. The adsorption of methylene blue on mesocellular foam silica was shown to follow the Freundlich adsorption isotherm model. The Gibbs free energy change during adsorption showed that this process was spontaneous. The enthalpy change in the process was –28.868?J·mol?1 K?1, indicating that the adsorption is exothermic. The negative value of entropy –49.296?J·mol?1 K-1 shows that the system disorder decreases due to adsorption.  相似文献   

9.
Abstract

A lamellar zinc dimolybdate hydroxide Zn3Mo2O8(OH)2 was prepared for the first time by a facile hydrothermal synthesis. The electrochemical properties of the lamellar Zn3Mo2O8(OH)2 as an anode material were investigated by cyclic voltammetry (CV), reversible capacity, cycling stability and rate capability for lithium ion batteries (LIB). The lamellar zinc dimolybdate hydroxide exhibits a reversible capacity of 404.6 mAh g?1 at a current density of 100?mA g?1 after 200 cycles. The reversible capacity of the lamellar Zn3Mo2O8(OH)2 remained at 60 mAh g?1 even at a current density of 3000?mA g?1. When the current density was returned to 100?mA g?1, a discharge capacity of 380 mAh g?1 was maintained after 200 discharge/charge cycles. The excellent electrochemical performance may be due to its unique lamellar structure, which buffers the volume change during the Li+ intercalation/de-intercalation and provides the electrode with convenient lithium ions and electron transport pathways. These results suggest the promising potential application of the lamellar zinc dimolybdate hydroxide in lithium-ion batteries.  相似文献   

10.
We have built a fibre optic confocal reflectance microscope capable of imaging biological tissue in near real time. The measured lateral resolution is 3 µm and axial resolution is 6 µm. Images of epithelial cells, excised tissue biopsies, and the human lip in vivo have been obtained at 15 frames s?1. Both cell morphology and tissue architecture can be appreciated from images obtained with this microscope. This device has the potential to enable reflected light confocal imaging of internal organs for in situ detection of pathology.  相似文献   

11.
A layer of liquid lines the airways in the lung. Previous microscopic studies have suggested that it is in two phases, with a mucous gel lying above a periciliary sol. However, shrinkage artifacts due to chemical fixation, dehydration, and drying have prevented reliable estimates of the depth of these layers. To avoid such problems, we have studied the surface liquid of bovine trachea by low-temperature scanning electron microscopy (LTSEM). A polished copper probe cooled to liquid nitrogen temperature was applied to the mucosal surface of sheets of excised tracheal epithelium to effect rapid freezing of surface liquid. Tissue sheets were then mounted in an LTSEM (AMRay 1000A with Biochamber) which maintains samples at -180°C with a Joule-Thompson refrigerator built into the stage. Tissues were fractured at right angles to the epithelial surface, coated with gold, and viewed, all at 10?5 to 10?6 torr without transfer through air. The sample was stable under the electron beam at accelerating voltages up to 20 kV. Epithelial features (nuclei, cilia, microvilli, mucous granules) were well preserved. The mucosal surface of the cells was covered with material on the order of 8 μm in depth. The mucous gel and periciliary sol could be seen as distinct layers and could be distinguished by the size and pattern of ice crystal voids generated by radiant-etching of the fractured surface of the sample.  相似文献   

12.
Infrared light from a pulsed optical parametric oscillator laser system was used to irradiate succinic acid (SA), a usual solid matrix used in matrix‐assisted laser desorption ionization, under vacuum. Ablated SA particles were trapped using a silica plate mounted 3.0 mm above and parallel to the sample surface. The morphology and particle size of ablated particles at different laser fluences were investigated using a scanning electron microscope (SEM). The dynamics of plume propagation for SA desorption process was studied with fast photography at atmospheric pressure. Plume expanding at 1.12 J/cm2 laser fluence was recorded using a high‐speed CMOS camera and corresponding propagation distance was measured. The solid matrix desorption was driven by phase explosion according to plume model fitting, which was consistent with the results of SEM. Microsc. Res. Tech. 76:744–750, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The protein surface layer of the bacterium Deinococcus radiodurans (HPI layer) was examined with an atomic force microscope (AFM). The measurements on the air-dried, but still hydrated layer were performed in the attractive imaging mode in which the forces between tip and sample are much smaller than in AFM in the repulsive mode or in scanning tunnelling microscopy (STM). The results are compared with STM and transmission electron microscopy (TEM) data.  相似文献   

14.
A polythiophene–graphene oxide compound membrane and Prussian blue were deposited sequentially on the surface of a glassy carbon electrode by cyclic voltammetry. Due to its excellent electrocatalysis and its analogy with peroxidase enzymes, Prussian blue has been widely used in amperometric biosensors. The polythiophene–graphene oxide compound membrane exhibited good electroconductibility and a large specific surface area. The fabricated Prussian blue/polythiophene/graphene oxide/glassy carbon electrode was characterized by transmission electron microscopy, scanning electron microscopy, and cyclic voltammetry. Under the optimal experimental conditions, the detection of hydrogen peroxide was studied by its amperometric current–time curve. Due to the presence of polythiophene–graphene oxide compound membrane and Prussian blue, the hydrogen peroxide sensor shows a linear calibration range of 1.0?×?10?6–1.0?×?10?4?mol?L?1, detection limits of 3.2?×?10?7?mol?L?1 at a signal-to-noise ratio of 3, and recoveries from 95.0 to 105.0%. The results show that the modified glassy carbon electrode has potential practical application for the determination of hydrogen peroxide based on its sensitivity and long-term stability.  相似文献   

15.
Griffin BJ 《Scanning》2000,22(4):234-242
An electron-based technique for the imaging of crystal defect distribution such as material growth histories in non- and poorly conductive materials has been identified in the variable pressure or environmental scanning electron microscope. Variations in lattice coherence at the meso-scale can be imaged in suitable materials. Termed charge contrast imaging (CCI), the technique provides images that correlate exactly with emitted light or cathodoluminescence in suitable materials. This correlation links cathodoluminescence and an electron emission. The specific operating conditions for observation of these images reflect a complex interaction between the electron beam, the positive ions generated by electron-gas interactions in the chamber, a biased detector, and the sample. The net result appears to be the suppression of all but very near surface electron emission from the sample, probably from of the order of a few nanometres. Consequently, CCI are also sensitive to very low levels of surface contaminants. Successful imaging of internal structures in a diverse range of materials indicate that the technique will become an important research tool.  相似文献   

16.
Scanning probe microscopes derived from the scanning tunnelling microscope (STM) offer new ways to examine surfaces of biological samples and technologically important materials. The surfaces of conductive and semiconductive samples can readily be imaged with the STM. Unfortunately, most surfaces are not conductive. Three alternative approaches were used in our laboratory to image such surfaces. 1. Crystals of an amino acid were imaged with the atomic force microscope (AFM) to molecular resolution with a force of order 10?8 N. However, it appears that for most biological systems to be imaged, the atomic force microscope should be able to operate at forces at least one and perhaps several orders of magnitude smaller. The substitution of optical detection of the cantilever bending for the measurement by electron tunnelling improved the reliability of the instrument considerably. 2. Conductive replicas of non-conductive surfaces enabled the imaging of biological surfaces with an STM with a lateral resolution comparable to that of the transmission electron microscope. Unlike the transmission electron microscope, the STM also measures the heights of the features. 3. The scanning ion conductance microscope scans a micropipette with an opening diameter of 0·04-0·1 μm at constant ionic conductance over a surface covered with a conducting solution (e.g., the surface of plant leaves in saline solution).  相似文献   

17.
We report the characterization of the complex oxide Nb16W18O94 using high angle annular dark field imaging at 200 kV in a scanning transmission electron microscope. The results of this study suggest that the W and Nb cations are not uniformly distributed among the cation columns projected along [001] but that there is preferential segregation of the heavier species to certain column sites. In order to analyse the experimental data obtained, an image processing methodology has been developed which may also find application in locating specific motifs within a generally distorted image field.  相似文献   

18.
Fluorinated alkanethiol self-assembled monolayers (SAM) films immobilized on gold substrates have been used as electron-sensitive resists to map quantitatively the spatial distribution of the primary electronbeam scattering in an environmental scanning electron microscope (ESEM). In this procedure, a series of electron dose standards are prepared by exposing a SAM film to electron bombardment in well-defined regions at different levels of electron dose. Microbeam secondary ion mass spectrometry (SIMS) using Cs+ bombardment is then used to image the F- secondary ion signal from these areas. From the reduction in F- intensity as a function of increasing electron dose, a calibration curve is generated that allows conversion of secondary ion signal to electron dose on a pixel-by-pixel basis. Using this calibration, electron dose images can be prepared that quantitatively map the electron scattering distribution in the ESEM with micrometer spatial resolution. The SIMS imaging technique may also be used to explore other aspects of electron-surface interactions in the ESEM.  相似文献   

19.
The advent of scanning electron microscopy has facilitated our understanding of the biology in relation to surface microstructure of many invertebrates. In recent years, interest in biomimetics and bio‐inspired materials has further propelled the search for novel microstructures from natural surfaces. As this search widens in diversity to nurture deeper understanding of form and function, the need often arises to examine rare specimens. Unfortunately, most methods for characterization of the microtopography of natural surfaces are sacrificial, and as such, place limiting constraints on research progress in situations where only a few rare specimens are known, such as the rich resources lodged in natural history museum collections. In this paper, we introduce the use of optical coherence tomography (OCT) as a noninvasive tool for bioimaging surface microtopography of crab shells. The technique enables the capture of microstructures down to micron level using low coherence near‐infrared light source. OCT has allowed surface microtopography imaging on crab shells to be carried out rapidly and in a nondestructive manner, compared to the scanning electron microscope technique. The microtopography of four preserved crab specimens from Acanthodromia margarita, Ranina ranina, Conchoecetes intermedius and Dromia dormia imaged using OCT were similar to images obtained from scanning electron microscope, showing that OCT imaging retains the overall morphological form during the scanning process. By comparing the physical lengths of the spinal structures from images obtained from OCT and scanning electron microscope, the results showed that dimensional integrity of the images captured from OCT was also maintained.  相似文献   

20.
In-situ SEM nanoindentation and nanoscratch testing methods are commonly used for mechanical characterization and investigation of the deformation and failure mechanisms of coating materials with micro-to nano-scale thicknesses. However, existing SEM-based integrated nanoindentation and nanoscratch instruments have two main limitations. First, the measured mechanical properties of the coating materials at micro-to nano-scale thicknesses are highly sensitive to surface roughness. Second, the existing SEM-based instruments lack the capability to acquire the morphology of residual imprints in real-time after nanoindentation and nanoscratching. In this study, a novel SEM-based integrated nanoindentation, nanoscratch, and atomic force microscopy (AFM) instrument, namely, NMT-AFM was proposed, developed and fabricated. The self-sensing piezoresistive cantilever (PRC) was selected as the AFM force sensor owing to its miniaturization ability. However, the resistance of the PRC sensor fluctuated because of the electron irradiation from SEM, resulting in the continuous drift of the PRC signal during SEM imaging. To overcome this limitation, a mechanism of PRC signal drift inside SEM was analyzed for the first time, and a PRC signal drift reduction method was proposed based on the mechanism analysis. The experimental results indicated that the PRC signal drift was reduced to 2 nm in 2 min by applied external voltage value UA of 30 V to modified PRC, which proved the proposed mechanism of PRC signal drift during SEM imaging. Finally, the X–Y fine nanopositioner angle calibration test using AFM calibration chip VGRP-UM and the nanoindentation/nanoscratch characterizations of the TiAlSiN coating material were conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号