首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Mercury electrodeless discharge lamps (Hg‐EDLs) were used to generate UV radiation when exposed to a microwave field. EDLs were coated with doped TiO2 in the form of thin films containing transition metal ions Mn+ (M = Fe, Co, Ni, V, Cr, Mn, Zr, Ag). Photocatalytic degradation of mono‐chloroacetic acid (MCAA) to HCl, CO2, and H2O, and decomposition of Rhodamine B on the thin films were investigated in detail. RESULTS: Polycrystalline thin doped TiO2 films were prepared by dip‐coating of EDL via a sol–gel method using titanium n‐butoxide, acetylacetone, and a transition metal acetylacetonate. The films were characterized by Raman spectroscopy, UV/Vis absorption spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microprobe analysis and by atomic force microscopy (AFM). The photocatalytic activity of doped TiO2 films was monitored in the decomposition of Rhodamine B in water. Compared with the pure TiO2 film, the UV/Vis spectra of V, Zr and Ag‐doped TiO2 showed significant absorption in the visible region, and hence the photocatalytic degradation of MCAA had increased. The best apparent degradation rate constant (0.0125 min?1), which was higher than that on the pure TiO2 film by a factor of 1.7, was obtained with the Ag(3%)/TiO2 photocatalyst. The effect of doping level of vanadium acetylacetonate on the photocatalytic efficiency of the V‐doped TiO2 was determined. CONCLUSIONS: Transition metal ion‐doped TiO2 thin films showed significant absorption in the visible region. The metal doped TiO2 photocatalyst (with an appropriate amount of V, Zr and Ag) on the Hg‐EDLs increased the degradation efficiency of MCAA in a microwave field. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Unlike many water pollution applications, visible‐light‐driven photocatalysis of gas‐phase pollutants has been reported only rarely. The present study was performed to investigate the feasibility of applying S‐doped visible‐light‐induced TiO2 to treat gas‐phase aromatic hydrocarbons, using a continuous air‐flow annular‐type reactor. RESULTS: The prepared S‐enhanced TiO2 powders, along with a commercially available TiO2 powder (Degussa P‐25), were characterized using diffuse reflectance UV‐VIS‐NIR spectrophotometry, Fourier transform infrared (FTIR) spectrophotometry, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetry (TG) analyses. A photocatalytic activity test exhibited an increasing trend in degradation reaction rates with increase in flow rate but a decreasing trend in terms of degradation efficiencies. Several experimental conditions induced reasonably high decomposition efficiencies with respect to toluene, ethyl benzene and o,m,p‐xylenes (close to or above 90%), although benzene exhibited a somewhat lower decomposition efficiency. CONCLUSIONS: The S‐doped TiO2 and undoped P25 TiO2 powders exhibited different catalyst characteristics. The results demonstrate that an annular‐type reactor coated with visible‐light‐activated S‐doped TiO2 can serve as an effective tool to treat gas‐phase aromatic hydrocarbon streams. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Silver and zirconium co‐doped and mono‐doped titania nanocomposites were synthesized and deposited onto polyacrylonitrile fibers via sol–gel dip‐coating method. The resulted coated‐fibers were characterized by X‐ray diffraction (XRD), scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, thermogravimetric analysis, and BET surface area measurement. Photocatalytic activity of the TiO2‐coated and TiO2‐doped coated fibers were determined by photomineralization of methylene blue and Eosin Y under UV–vis light. The progress of photodegradation of dyes was monitored by diffuse reflectance spectroscopy. The XRD results of samples indicate that the TiO2, Ag‐TiO2, Zr‐TiO2, and Ag‐Zr‐TiO2 consist of anatase phase. All samples demonstrated photo‐assisted self‐cleaning properties when exposed to UV–vis irradiation. Evaluated by decomposing dyes, photocatalytic activity of Ag–Zr co‐doped TiO2 coated fiber was obviously higher than that of pure TiO2 and mono‐doped TiO2. Our results showed that the synergistic action between the silver and zirconium species in the Ag‐Zr TiO2 nanocomposite is due to both the structural and electronic properties of the photoactive anatase phase. These results clearly indicate that modification of semiconductor photocatalyst by co‐doping process is an effective method for increasing the photocatalytic activity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
The optically transparent poly(methyl methacrylate‐co‐maleic anhydride) P(MMA‐co‐MA)/SiO2? TiO2 hybrid materials were prepared using 3‐aminopropyl triethoxysilane as a coupling agent for organic and inorganic components. Real‐time FTIR was used to monitor the curing process of hybrid sol, indicating that imide group formation decreased with increasing titania content. scanning electron microscopy, atomic force microscopy, and differential scanning calorimetry results confirmed their homogeneous inorganic/organic network structures. TGA analysis showed that incorporated titania greatly prohibits the thermodegradation of hybrid films, especially at the content of 5.3 wt %, showing an increase of about 32.6°C at 5% loss temperature in air. The UV degradation behavior of P(MMA‐co‐MA) studied by quasi‐real‐time FTIR showed that TiO2 incorporated in the hybrid network provides a photocatalytic effect rather than a UV‐shielding effect. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1714–1724, 2005  相似文献   

5.
An approach is introduced for fabricating the TiO2‐coated molybdenum (Mo) powders via hydrothermal method, in which the Mo nanopowders were prepared by the electric explosion of wire method. The microstructure and photocatalytic properties of the samples were characterized by X‐ray diffraction, scanning electron microscopy, high‐resolution transmission electron microscopy, Raman spectroscopy (Raman), low temperature sorption of nitrogen (BET), and diffuse reflectance accessory of UV–Vis spectrophotometer. It was revealed that compared with pure TiO2, the TiO2‐coated Mo powders exhibited an improved photocatalytic activity, and the highest photocatalytic activity was achieved at the 1 wt% optimal mass percentage of the Mo nanopowders. The preparation of TiO2‐coated Mo powders involved a relatively simple, economical, scalable, and also environment‐friendly approach.  相似文献   

6.
Porous ultrahigh‐molecular‐weight polyethylene (UHMWPE)‐based composites filled with surface‐modified Ce‐doped TiO2 nanoparticles (Ce–TiO2/UHMWPE) were prepared by template dissolution. The composites were characterized by Fourier transform infrared spectroscopy, ultraviolet (UV)–visible spectroscopy, diffuse reflectance spectra, and scanning electron microscopy); the photocatalytic activity was also evaluated by the decomposition of methyl orange under UV exposure. The results demonstrate that the severe aggregation of Ce–TiO2 nanoparticles could be reduced by surface modification via a silane coupling agent (KH570). The Ce–TiO2/UHMWPE porous composites exhibited a uniform pore size. Doping with Ce4+ effectively extended the spectral response from the UV to the visible region and enhanced the surface hydroxyl groups of the TiO2 attached to the matrix. With a degradation rate of 85.3%, the 1.5 vol % Ce–TiO2/UHMWPE sample showed the best photocatalytic activity. The excellent permeability of the porous composites is encouraging for their possible use in wastewater treatment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
SiO32? doped TiO2 films with oriented nanoneedle and nanorectangle block structure has been firstly synthesized by hydrothermal synthesis method. The prepared samples are characterized, X-ray diffraction (XRD) results demonstrate that the SiO32? doped TiO2 films are rutile and brookite phases. The scanning electron microscope (SEM) analysis reveals that the quantity of O2 affects the morphology of the SiO32? doped TiO2 films (SiTiA films prepared with unmodified substrate). The SiO32? doped TiO2 films (SiTiB films prepared with modified substrate) display two layers, one is porous structure, the other is nanoneedle structure. UV–vis, IR, transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) microscopy all prove that SiO32? have been doped in the TiO2 crystal structure. They have remarkable red shift and higher photocatalytic activity of degradation of methylene blue than P-25 under visible light (λ > 420 nm) irradiation. Besides, photocatalytic activity of the film is stable during 4 times recycling.  相似文献   

8.
Nb‐doped Ti3SiC2 compounds ((Ti1‐xNbx)3SiC2, x=0%, 2%, 5%, 7%, and 10%) as novel interconnect materials of intermediate temperature solid oxide fuel cell (IT‐SOFC) were studied in the simulated cathode atmosphere. The long‐term oxidation behaviors and area‐specific resistance (ASR) of these compounds have been investigated at 800°C up to 700 hours. Among these compounds, (Ti0.95Nb0.05)3SiC2 shows the best oxidation resistance and lowest postoxidation ASR (5.6 mΩ·cm2 after exposure at 800°C in air for 700 hours), endowing it a great promising material in the application as interconnect of IT‐SOFC. After oxidation, Nb is mainly doped uniformly into the lattice of rutile‐TiO2 (r‐TiO2) grains formed on the tested compounds. Nb doping could decrease the concentrations of both oxygen vacancies and titanium interstitials in r‐TiO2. As a result, the oxidation rate of (Ti,Nb)3SiC2 decreases remarkably, the structure of the oxide scale changes from a duplex layer of TiO2 outer layer and TiO2+SiO2 mixture inner layer to a single mixture layer. Nb doping also increases the amount of semifree electrons, causing the significant reduce of the postoxidation ASR of (Ti,Nb)3SiC2.  相似文献   

9.
A new type of photodegradable poly(vinyl chloride)‐bismuth oxyiodide/TiO2 (PVC‐BiOI/TiO2) nanocomposite film was prepared by embedding a nano‐TiO2 photocatalyst modified by BiOI into the commercial PVC plastic. The solid‐phase photocatalytic degradation behavior of the as‐prepared film was investigated in ambient air at room temperature under UV light irradiation, with the aid of UV‐Vis spectroscopy, weight loss monitoring, scanning electron microscopy, and FT‐IR spectroscopy. Compared to the PVC‐TiO2 nanocomposite film, the PVC‐BiOI nanocomposite film and the pure PVC film, the PVC‐BiOI/TiO2 nanocomposite film exhibited a higher photocatalytic degradation activity. The optimal mass ratio of BiOI to TiO2 was found to be 0.75 %. The weight loss rate of the PVC‐BiOI/TiO2 nanocomposite film reached 30.8 % after 336 h of irradiation, which is 1.5 times higher than that of the PVC‐TiO2 nanocomposite film under identical conditions. The solid‐phase photocatalytic degradation mechanism of the nanocomposite films was briefly discussed.  相似文献   

10.
Alkaline‐earth metal Ca and N codoped TiO2 sheets with exposed {001} facets were obtained through a one‐step hydrothermal process. The codoped TiO2 appears as microsheets with length of 1–2 μm and thickness of 100–200 nm. The X‐ray diffractometer and X‐ray photoelectron spectroscopy results confirm that Ca and N codoped TiO2 has higher crystallinity than N‐doped TiO2, as well Ca, N atoms were successfully codoped into TiO2 as interstitial Ca and interstitial N or an O–Ti–N structure, respectively. Compared with N monodoped, further alkaline‐earth Ca codoped has little influence on the energy bands of TiO2 except slightly elevating the conduction band edge at a value of 0.02 eV. The hydroxyl radicals (?OH) producing and photocatalytic experiment shows that Ca and N codoped can effectively decrease the generation of recombination centers, and enhance separation efficiency of photo‐induced electrons and holes as well as the photocatalytic activity of TiO2. The codoped photocatalyst has the highest photocatalytic activity when Ca doped ratio reach 0.48%. Excess Ca doped will weaken the crystallization of anatase TiO2, form charge center, produce new recombination centers and finally reduce the photocatalytic activity of TiO2.  相似文献   

11.
《Ceramics International》2023,49(2):1678-1689
Undoped and metal doped nanocrystalline TiO2 transparent thin films were synthesized on glass substrates via sol-gel/dip-coating method. TiO2 thin film coatings can be applied to the surfaces of solar panels to impart self-cleaning properties to them. The structural and optical properties of few nanometer-thick films were characterized by XRD, SEM, CA, AFM, XPS, and UV–Vis spectrophotometry techniques. The stoichiometric TiO2 films crystallized in anatase phase, with a particle size of ~100 nm, which were uniformly distributed on the surface. The prepared films with a roughness of ~1–5 nm, increased the hydrophilicity of the glass surface. Reducing the amount of Ti precursor (X) favored the improvement of film quality. To improve the photocatalytic activity of the TiO2 thin film, it was doped with Ni, Cd, Mo, Bi and Sr metal ions. The effect of metal doping on the photocatalytic activity of the films was investigated using the degradation process of methylene blue (MB) dye as the model contaminant. Among the prepared coatings, the Sr–TiO2 film showed the highest efficiency for MB degradation. It increased the dye degradation efficiency of the films under both UV and Vis lights. The kinetic investigations also showed that the degradation of MB by TiO2 and M ? TiO2 films obeyed the pseudo-first order kinetics.  相似文献   

12.
A photocatalyst, TiO2?xNy/AC (activated carbon (AC) supported N‐doped TiO2), highly active in both the Vis and UV range, was prepared by calcination of the TiO2 precursor prepared by acid‐catalyzed hydrolysis in an ammonia atmosphere. The powders were characterized by diffuse reflectance spectroscopy, scanning electron microscopy, X‐ray diffraction, N2 adsorption, Fourier transform infrared spectroscopy and phenol degradation. The doped N in the TiO2 crystal lattice creates an electron‐occupied intra‐band gap allowing electron‐hole pair generation under Vis irradiation (500–560 nm). The TiO2?xNy/AC exhibited high levels of activity and the same activity trends for phenol degradation under both Vis and UV irradiation: TiO2?xNy/AC calcined at 500 °C for 4 h exhibited the highest activity. The band‐gap level newly formed by doped N can act as a center for the photo‐generated holes and is beneficial for the UV activity enhancement. The performance of the prepared TiO2?xNy/AC photocatalyst revealed its practical potential in the field of solar photocatalytic degradation of aqueous contaminants. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

14.
Polyaniline (PANi)–titanium dioxide (TiO2) nanocomposite materials were prepared by chemical polymerization of aniline doped with TiO2 nanoparticles. Surface pressure–area (π‐A) isotherms of these nanocomposites show phase transformations in the monolayer during compression process. Multiple isotherms indicate that the monolayer of the nanocomposite material can retain its configuration during compression‐expansion cycles. Langmuir–Blodgett thin films of PANi–TiO2 nanocomposite were deposited on the quartz and indium tin oxide coated conducting glass substrates. Fourier transfer infrared spectroscopy and UV–visible spectroscopy study indicates the presence of TiO2 in PANi, whereas X‐ray Diffraction study confirmed the anatase phase of TiO2 and particle size (~nm) of PANi–TiO2. The morphology of Langmuir–Blodgett films of these nanocomposites was also characterized by atomic force microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41386.  相似文献   

15.
Nb‐doped TiO2 (TNO) films, which are highly conductive and transparent, can be used as transparent conductive oxide (TCO) films. A predominant manufacturing method for TCO film is magnetron sputtering, and the material of the sputtering target affects the performance of the film. The objective of this study was to investigate the sintering densification, microstructure, and electrical properties of TNO and TiO2 sputtering targets. The results showed that the segregation of Nb at the grain boundary in TNO helps to facilitate densification and inhibit grain growth. After 1200°C sintering, the sintered density of TNO target achieves almost 100% of the theoretical density. Moreover, the Nb2O5 additive greatly improves the electrical properties, decreasing the resistivity of TiO2 from >108 Ωcm to 4.6 × 101 Ωcm. Correlations between TNO sputtering target investigated in this study and TNO sputtered film reported in the literature are also preliminarily established. The resistivity of TNO film with an anatase structure is obviously lower than that of TNO target with a rutile structure.  相似文献   

16.
Au-buffered TiO2 thin films have been prepared by radio frequency magnetron sputtering method. The structural and morphological properties of the thin films were characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. The photocatalytic activity of the samples was evaluated by the photodecomposition of methylene blue. The Au-buffer thin layer placed between the TiO2 thin films significantly enhanced photocatalytic activity by 50%. Annealing the Au-buffered TiO2 thin film at 600 °C decreased the film roughness, but it increased the surface area and anatase crystalline size, enhancing the photocatalytic activity.  相似文献   

17.
BACKGROUND: In this study, visible‐light‐derived photocatalytic activity of metal‐doped titanium dioxide nanosphere (TS) stacking layers, prepared by chemical vapor deposition (CVD), was investigated. The as‐grown TS spheres, having an average diameter of 100–300 nm, formed a layer‐by‐layer stacking layer on a glass substrate. The crystalline structures of the TS samples were of anatase‐type. RESULTS: Ultraviolet (UV) absorption confirmed that metallic doping (i.e. Co and Ni) shifted the light absorption of the spheres to the visible‐light region. With increasing dopant density, the optical band gap of the nanospheres became narrower, e.g. the smallest band gap of Co‐doped TS was 2.61 eV. Both Ni‐ and Co‐doped TS catalysts showed a photocatalytic capability in decomposing organic dyes under visible irradiation. In comparison, Co‐doped TiO2 catalyst not only displays the adsorption capacity, but also the photocatalytic activity higher than the N‐doped TiO2 catalyst. CONCLUSION: This result can be attributed to the fact that the narrower band gap easily generates electron–hole pairs over the TS catalysts under visible irradiation, thus, leading to the higher photocatalytic activity. Accordingly, this study shed some light on the one‐step efficient CVD approach to synthesize metal‐doped TS catalysts for decomposing dye compounds in aqueous solution. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
BACKGROUND: A continuous‐flow microwave photocatalytic reactor was set up consisting of a glass tube equipped with microwave powered mercury electrodeless discharge lamps (EDLs) coated with thin films of nanoporous titanium(IV) oxide. The effect of operational parameters on photocatalytic degradation of aqueous mono‐chloroacetic acid (MCAA) by a TiO2/UV/MW process was investigated. RESULTS: Studies were carried out at a relatively high concentration of MCAA (0.1 mol L?1), and revealed that reaction temperature and light intensity of the EDLs depend inversely on the flow rate, but that the 366 nm line intensity of EDL is directly proportional to the reaction temperature. The photodegradation of MCAA was enhanced by heating and significantly enhanced by air bubbling of the reaction mixture in the glass reservoir at laboratory temperature. The photocatalytic efficiency increased with the number of titania‐coated EDLs inserted in the glass tube reactor. CONCLUSIONS: It was found that the operational parameters (i.e. flow rate, reaction temperature, number of titania‐coated EDLs, and air bubbling) had important effects on degradation efficiency. The photocatalytic degradation of MCAA on thin films of titanium(IV) oxide in the continuous‐flow microwave photoreactor can be enhanced in the TiO2/UV/MW system. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
《Ceramics International》2023,49(19):31718-31726
In this work, we discuss the effect of niobium (Nb) doping concentrations of 2% and 4% on the physicochemical characteristics and photocatalytic properties of tin dioxide nanostructure, which were successfully developed by a basic hydrothermal route. Nb-doped SnO2 were characterized with regards to their optical, structural and photocatalytic features. X-ray diffraction (XRD) analyses display that both pristine and doped tin dioxide had a fine crystalline structure having tetragonal structure. Scanning electron microscopy (SEM) analysis shows that materials exhibited the irregular shaped nanoparticles morphology. Optical absorption analysis using UV–visible spectroscopy revealed a redshift in the bandgap energy for Nb3+ doped SnO2 nanoparticles. Methylene blue aqueous (MB) dye was degraded by 93.78% in 120 min when exposed to 4% Nb doped SnO2 NPs under visible light. The 4% Nb doped SnO2 shows elevated photocatalytic activity owing to their greater surface area containing greater active zones responsible for adsorption of larger dye species and good structural stability. Similarly, the 4% Nb doped SnO2 photocatalysts maintained their excellent stability and photodegradation efficiency over 89% even after being subjected to 5th cycles. The scavenger analysis demonstrates that the superoxide (O2) radical, a major active substance, performed a crucial role in the mineralization of the aqueous MB dye. The 4% Nb doped SnO2 also shows remarkable antimicrobial activity. Our finding suggests that doping strategy considered as efficient method that can help to increase the photocatalytic and antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号