首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphors that exhibit a narrow red emission are particularly interesting due to the advantage of providing a more extensive color gamut and better rendering in LED applications such as displays and solid‐state lighting. Although some Eu2+‐activated nitridosilicates have been discovered in this regard, K2SiF6:Mn4+ phosphors are the only option in actual LED applications thus far. We discovered a novel phosphor, K3SiF7:Mn4+, with P4/mbm symmetry. The luminescent properties of K3SiF7:Mn4+ are almost identical to those of the K2SiF6:Mn4+ phosphor, but its materials identity is distinct due to a completely different crystallographic structure, which leads to reduced decay time. The fast decay is one of the most serious disadvantages of existing K2SiF6:Mn4+ phosphors. The K3SiF7:Mn4+ phosphor was examined in comparison to the K2SiF6:Mn4+ via density functional theory calculation, Rietveld refinement, X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure spectroscopy, and time‐resolved photoluminescence.  相似文献   

2.
《Ceramics International》2020,46(7):8811-8818
K2SiF6:Mn4+ phosphor is well known for its excellent red emission performance which is vital for improving the color rendering of white light-emitting diodes. However, the poor moisture resistance limits its application in optical devices. In this paper, K2SiF6:Mn4+ phosphor is coated with an inorganic hydrophobic protective layer to obtain good moisture resistance. Chemical vapor deposition method was used to decompose acetylene at high temperature, and the generated nanoscale carbon layer worked as a hydrophobic protective coating on the surface of the phosphor. Microstructure, compositions and properties of the synthesized K2SiF6:Mn4+@C phosphor were investigated in detail. It is found that most of the deposited carbon is coated on the surface of phosphor crystals in amorphous state. The carbon atoms are bonded with the fluorine element in K2SiF6:Mn4+ phosphor, forming carbon-fluorine (C–F) covalent bonds. The moisture resistance of K2SiF6:Mn4+@C phosphor is improved owing to the protection of the hydrophobic carbon. The relative emission intensity of K2SiF6:Mn4+@C phosphor could maintain 73% of the initial luminous intensity after immersing in the aqueous solution at room temperature for 8 h, whereas K2SiF6:Mn4+ phosphor without carbon coating was only 0.7% remaining of the initial value under the same conditions.  相似文献   

3.
The cation exchange method has been demonstrated to be efficient in doping Mn4+ ions into various fluorides to synthesize the red-emitting LED phosphors. This paper, however, reports the challenge in using this method to dope Mn4+ into the Na2SiF6 single crystals, to prepare the fluoride phosphor in single-crystal form, a state-of-the-art study in the white LED lighting field. The millimeter-sized Na2SiF6 single crystals with a uniform columnar morphology (2–3 mm in length) were successfully grown in solution by a slow cooling process after optimizing the precursors. Then, the crystals were soaked in the HF solution dissolved with K2MnF6 to implement Mn4+-doping via the cation exchange process. Evaluation of the Mn4+-doping behavior reveals that the Mn4+ ↔ Si4+ cation exchange is less efficient in the case of single crystal host compared with the polycrystalline powdery ones and by-reactions also occur which generates new phases. The Na2SiF6 single crystals doped with Mn4+ exhibit a series of discrete sharp peaks with intense zero phonon line emission at 617 nm under 450 nm blue irradiation. This study may trigger the exploration of new single crystal fluoride phosphor.  相似文献   

4.
K2TiF6:Mn4+ is an attractive narrow-band red-emitting phosphor for warm white light-emitting diodes (LEDs). Nevertheless, the hexafluoride phosphor is liable to deliquesce in moist environments, which leads to a sharp deterioration performance of luminescence. Surface modification of K2TiF6:Mn4+ phosphor with SrF2 coating has been introduced, with the aid of KHF2 transition layer to moderate the lattice mismatch. The reaction mechanism is discussed in detail, as so as the influence of SrF2 coating on the luminescence intensity. The SrF2 coating is able to prevent the hydrolysis of internal [MnF6]2− group; thereby, the luminescence intensity retains over 90% of initial value after being immersed in distilled water for 2 h. The LED devices fabricated with commercial Y3Al5O12:Ce3+ and as-modified K2TiF6:Mn4+ phosphors exhibit bright white light with tunable chromaticity coordinate, correlated color temperature, and color rendering index. It enlightens a convenient method to enhance the moisture resistance of Mn4+ doped fluoride phosphors for commercial application in the field of white LEDs.  相似文献   

5.
It has been one of the hot issues to prepare the red-emitting Mn4+-doped fluoride phosphors with highly efficient and waterproofness for warm white-light-emitting diodes (WLEDs) by the green and environmentally friendly method. Herein, we design a novel green molten salt route to synthesize K2SiF6:Mn4+ red powder using molten NH4HF2 salt instead of HF liquor as the reaction medium. The results show that KMnO4 and MnF2 could produce Mn4+ in NH4HF2 molten salt through a reduction reaction, and the resulting Mn4+-doped K2SiF6 exhibited a bright red emission peaked at 632 nm under blue light excitation. The luminescence intensity of the as-obtained product after immersing into water for 24 hours maintain nearly 100% of that before soaking and emission peak shape remains unchanged. The thermal stability of the sample was evaluated by temperature-dependent luminescence spectral intensity during heating and cooling. Furthermore, a warm white-light-emitting diodes (WLEDs) with an excellent color rendering index (Ra = 87.1), lower correlated color temperature (CCT = 3536K), and high luminous efficacy (116.99 lm·W−1) was fabricated based on blue chip and K2SiF6:Mn4+ and commercial yellow phosphor (Y3Al5O12:Ce3+).  相似文献   

6.
A novel red phosphor Li0.5Na1.5SiF6:Mn4+ (LNSF:Mn) based on the unequal dual‐alkaline hexafluorosilicate with superior optical performances has been synthesized via ion‐exchange between [MnF6]2? and [SiF6]2? at room temperature. The composition and the crystal structure of the as‐obtained phosphor LNSF:Mn were determined by energy‐dispersive x‐ray spectroscopy (EDS) and x‐ray diffraction (XRD), respectively. The formation mechanism of the red phosphor LNSF:Mn has been discussed in detail. The phosphor LNSF:Mn exhibits good chromaticity properties and a quantum yield (QY) of 96.1%, which are better than the identified fluorosilicate phosphors Na2SiF6:Mn4+ (NSF:Mn) and K2SiF6:Mn4+ (KSF:Mn). A broad and intense absorption in the blue and a bright emission in red‐shifted wavelengths make the phosphor LNSF:Mn a desired candidate for applications in warm white light‐emitting diodes.  相似文献   

7.
《Ceramics International》2022,48(12):17253-17260
Mn4+-doped fluoride phosphors can solve the problem for lack of red emitting component in commercial white light-emitting diodes (WLEDs). However, its application is seriously hindered by its easy hydrolysis. Here, we propose to use sodium sulfite as a passivator to treat K2SiF6:Mn4+. After passivation, a Mn4+-rare K2SiF6 protective layer can be formed in situ on the surface of the phosphor, and lead to improved emission intensity, luminescent thermal stability and moisture resistance. When soaking in water for 6 h, the integrated fluorescent intensity of the passivated sample maintained 90.8% of the initial value, while the intensity of the un-passivated sample sharply decreased to 10.2% of the initial value. Mechanisms to improve the emission, water resistance and thermal stability of the luminescence are proposed and discussed. WLED was assembled with the passivated sample, and good performance of warm white light (CCT = 2963 K, Ra = 90.4) was obtained.  相似文献   

8.
For phosphor‐converted warm white light‐emitting diodes (WLEDs), it is essential to find highly efficient red oxide phosphors, which are better chemically stable and benign to environment and can be prepared in a much milder condition. Here, we report a red phosphor LiNaGe4O9:Mn4+ with a quantum yield up to 78% after systematic optimization in synthesis temperature, dopant concentration of Mn4+, and sintering time. Best performance of the phosphor can be reached when it is synthesized in a mild reaction condition, that is, at 850°C for 3 h in air. The integrated emission intensity is more than four times stronger than commercial red phosphor 3.5MgO·0.5MgF2·GeO2:Mn4+ (MFG:Mn4+) under a blue light excitation at 470 nm. Crystal structural analysis reveals that the high efficiency Mn4+ exhibits in the compound is mainly due to the well separation of GeO6 groups from each other by GeO4 tetrahedra in the neighborhood and the ideal substitution of octahedral Ge4+ site by Mn4+ in view of both size and charge matches. The high performance of the phosphor encourages us to apply the blue absorbing red phosphor to WLED, which is based on combination of a blue LED chip and YAG:Ce3+, and the warm perception WLED is therefore achieved with a color temperature of 3353 K.  相似文献   

9.
《Ceramics International》2021,47(23):33172-33179
K2SiF6:Mn4+ (KSF:Mn4+), as an efficient red-emitting phosphor, has a promising application in WLEDs (white light-emitting diodes). However, poor moisture resistance performance still hinders its deeper commercialization. Here, KSF:Mn4+@ CaF2 with high water resistance and luminescent thermal stability has been prepared though H2O2-free hydrothermal method and surface coating process. Both KSF:Mn4+ and KSF:Mn4+@CaF2 all have high luminescent thermal stability, due to negative thermal quenching (NTQ) effect. Mechanism of the NTQ has been discussed and suggested as thermal-light energy conversion mechanism. Compared with KSF:Mn4+, water resistance of KSF:Mn4+@CaF2 is greatly improved by coating of CaF2, because the outer shell of CaF2 can effectively prevent the [MnF6]2- group on the surface of the phosphor from being hydrolyzed into MnO2. The results of water resistance test shows that after immersing in water for 360 min (6 h), luminescent intensity of the uncoated product drops to 41.68% of the initial one, while that of the coated product remains to have 88.24% of its initial one. Warm white light with good luminescent performances (CCT = 3956 K and Ra = 89.3) is got from prototype WLEDs assembled by using the optimal coated sample. The results suggest that the optimal coated sample has potential application in blue-based warm WLEDs.  相似文献   

10.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

11.
Eu2+ and Eu2+/Mn2+‐activated Na5Ca2Al(PO4)4 phosphors have been synthesized by the combustion method. X‐ray powder diffraction profiles, luminescence spectra, chromaticity variation, and energy transfer of Na5Ca2Al(PO4)4:Eu2+, Mn2+ were investigated as a function of the Eu2+ and Mn2+ concentrations in Na5Ca2Al(PO4)4. The Na5Ca2Al(PO4)4:Eu2+,Mn2+ phosphors can be effectively excited at wavelength ranging from 300 to 430 nm, which matches well with that for near‐ultraviolet (UV) light‐emitting diode (LED) chips. Under excitation at 354 nm, Na5Ca2Al(PO4)4:Eu2+,Mn2+ not only exhibits blue‐green emission band attributed to 4f65d1→4f7 of Eu2+ but also gives an orange emission band attributed to 4T16A1 of Mn2+. The emission color of the phosphor can be systematically tuned from blue‐green through white and eventually to orange by adjusting the relative content of Eu2+ and Mn2+ through the principle of energy transfer. The results indicated that Na5Ca2Al(PO4)4:Eu2+, Mn2+ may serve as a potential color‐tunable phosphor for near UV white‐light LED.  相似文献   

12.
《Ceramics International》2022,48(24):36140-36148
Non-rare earth Mn4+ ion-doped red oxide phosphors have great potential for applications in warm white light-emitting diodes (wLEDs) due to their low cost and stable physicochemical properties. Herein, a series of Ba2LaTaO6 (BLTO): Mn4+ phosphors were successfully synthesized by the high-temperature solid-state method. The theoretical values of the band gap calculated by the density functional theory are close to the experimental values obtained by the absorption spectroscopy. In addition, the phosphors have a broad excitation band in the wavelength range of 280–550 nm and emit red light at the peak wavelength of 681 nm under excitation. The concentration quenching of the BLTO: Mn4+ phosphor was caused by dipole-dipole interactions. The activation energy and the average decay lifetimes of the samples were calculated. Meanwhile, the effects of synthesis temperature and Li+ ion doping on the luminescence performance of the samples were also investigated. Satisfactorily, the color purity and internal quantum efficiency of the phosphor reached 98.3% and 26.8%, respectively. Further, the samples were prepared as red-light components for warm wLEDs. The correlated color temperature, color rendering index, and luminous efficiency of the representative devices driven by 60 mA current were 5190 K, 83.3, and 81.59 lm/W, respectively. This work shows that the BLTO: Mn4+ red phosphor with excellent luminescence performance can be well applied to warm wLEDs.  相似文献   

13.
《Ceramics International》2021,47(23):33152-33161
The Mn4+-doped Ca2MgTeO6 (CMTO) far-red emitting phosphors with double perovskite-type structure were successfully synthesized. Upon near-ultraviolet (n-UV, 300 nm) light excitation, the as-prepared phosphors showed far-red light at 700 nm attributed to the 2Eg4A2g transition of Mn4+ ion. The doping concentration of the CMTO:xMn4+ samples was optimized to be 0.8 mol%. The relevant mechanism of concentration quenching was demonstrated as the dipole-dipole interaction. Furthermore, solid solution and impurity doping strategies were adopted to improve the far-red emission of the luminescence-ignorable CMTO:Mn4+ phosphor. Series of Ca2MgTe(1−y)WyO6:0.8 mol%Mn4+ (y = 0–100 mol%) solid solution and Ca2−zLnzMgTe0.6W0.4O6:Mn4+ (Ln = La, Y, and Gd, z = 10 mol%) phosphors were synthesized through the above two strategies. The luminescence intensity of the optimal Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was 13.7 times that of the CMTO:Mn4+ phosphor and 2.51 times that of red commercial phosphor K2SiF6:Mn4+. Notably, both CMTO:Mn4+ and Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphors exhibited remarkable thermal stability compared with most Mn4+-doped phosphors. Finally, the highly efficient Ca1.9Gd0.1MgTe0.6W0.4O6:Mn4+ phosphor was successfully applied in fabricating the warm white light diode (w-LED). This working along both lines strategy exhibited great potential for luminescence optimization of Mn4+-doped oxide phosphors.  相似文献   

14.
Mn4+-activated deep red-emitting SrLaLiTeO6 phosphors are investigated for indoor plant growth LED applications for the first time. The phosphors crystallize in monoclinic (P21/n) symmetry is isostructural with SrLaLiTeO6 host. B-site substitution of Mn4+ ions is confirmed from the redshift of high energy phonon modes in both Raman and IR spectra. The phosphor exhibited a far-red emission centered at 696 nm corresponding to the 2Eg → 4A2g spin-forbidden transition of the Mn4+ ions. Approximate crystal field parameters depict the weak influence of neighboring ligand fields on Mn4+ ions and the least covalence of Mn4+-ligand bonding compared to other double perovskite phosphors. Moreover, the phosphors exhibit excellent thermal stability with an activation energy of 0.23 eV. Phosphor parameters including CCT, color purity, and quantum yield are evaluated and their values meet the requirements of a red-emitting phosphor for LED applications. Furthermore, the PL emission spectrum of SrLaLiTeO6: Mn4+ matches with the absorption spectrum of plant phytochromes denoting the prospects of this phosphor for indoor plant growth LED applications.  相似文献   

15.
《Ceramics International》2023,49(16):27024-27029
Mn4+-activated fluoride is one of the most important red phosphors for white light-emitting diodes (WLEDs) with high color rendering index (CRI). Due to a lack of water resistance, their potential applications are limited. Although surface coating strategies improve the waterproof stability of fluoride red phosphors, they have downsides. It was found that Nb5+ plays an important role in improving the water resistance of Mn4+-activated oxyfluorides by preventing the hydrolysis of [MnF6]2-. In this work, the influence of Nb5+ on the waterproof stability of Mn4+-activated fluorides was explored. A set of synthesized K2Ta1-xNbxF7:Mn4+ phosphors exhibit tunable and superior water resistance. The photoluminescence (PL) intensity of the representative sample K2Ta0.6Nb0.4F7:5%Mn4+ remains nearly 100% of its initial value even after being immersed in water for 60 min, which is significantly higher than the commercial K2SiF6:Mn4+ red phosphor (8.7%). Our findings open up new possibilities for the development of waterproof fluoride red phosphors.  相似文献   

16.
A single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.  相似文献   

17.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

18.
The Mn4+ activated fluostannate Na2SnF6 red phosphor was synthesized from starting materials metallic tin shots, NaF, and K2MnF6 in HF solution at room temperature by a two‐step method. The formation mechanism responsible for preparing Na2SnF6:Mn4+ (NSF:Mn) has been investigated. The influences of synthetic parameters: such as concentrations of HF and K2MnF6 in reaction system, reaction time, and temperature on crystallinity, microstructure, and luminescence intensity of NSF:Mn have been investigated based on detailed experimental results. The actual doping concentration of Mn4+ in the NSF:Mn host lattice is less than 0.12 mol%. The most of K2MnF6 is decomposed in HF solution especially in hydrothermal system at elevated temperatures. The color of the as‐prepared NSF:Mn samples changes from orange to white when the temperature is higher than 120°C, which indicates the lower concentration of luminescence centers in the crystals. A series of “warm” white light‐emitting diodes with color rendering index (CRI) higher than 88 and correlated color temperatures between 3146 and 5172 K were obtained by encapsulating the as‐prepared red phosphors NSF:Mn with yellow one Y3Al5O12:Ce3+ (YAG:Ce) on 450 nm blue InGaN chips. The advantage of the synthetic strategy to obtain NSF:Mn can be extended to developing Mn4+‐doped red phosphors from low‐costing metals at room temperature for large‐scale industrial applications.  相似文献   

19.
《Ceramics International》2022,48(11):15695-15702
The exploration of efficient and high-purity red phosphors is an urgent need in LED development. Due to the compact and compositional-tunable structure of whitlockite compound, manganese-based Ca19Mn2(PO4)14 is chosen as phosphor host for Eu2+ sensitization. Rietveld refinement, steady-state spectra, decay lifetime analysis and temperature-dependent emission spectra were investigated and clearly discussed. Under 360 nm excitation, Ca19Mn2(PO4)14: Eu2+ shows a strong Mn2+ sensitized emission at 655 nm with FWHM of 82 nm, benefiting from the short-distance-induced high-efficient Eu2 -Mn2+ energy transfer. Emission engineering of Ca19Mn2(PO4)14: Eu2+ is achieved by Sr2+ co-doping, leading to both tunable peak wavelength (ranging from 650 to 610 nm) and improved intensity (130% of original value). Moreover, Ca19Mn2(PO4)14: Eu2+ exhibits a promising thermal stability where only 40% of emission intensity is lost at 200 °C. Finally, we explored the working performance of the fabricated RGB phosphor-converted white LED. The present work indicates that Ca19Mn2(PO4)14: Eu2+ phosphor is of great potential as a promising and efficient red phosphor in phosphor-converted white LED.  相似文献   

20.
The excellent narrow-band emitters, especially the green ones, are regarded as a pivotal research direction for light-emitting diodes (LED) backlights in liquid-crystal displays (LCDs). A nearly single-peak green emission centered at 513 nm with a full width at half maximum of 28 nm is reached in KAl11O17:0.1Eu2+, 0.15Mn2+ phosphor via nearly 100% energy transfer (ET) efficiency, and the extended X-ray absorption fine structure analysis elucidates its mechanism, which is that Eu2+ and Mn2+ are constrained to form Eu2+–Mn2+ pairs with a small distance 3.7 Å caused by the local environment relaxation inducement. Meanwhile, by creating an unhindered energy flow between Eu2+, Mn2+ and K+/O2− defect levels through ET and multilevel electron trapped and recombination process, the KAO:Eu2+, Mn2+ phosphors perform superb photoluminescence property with a high color purity of 83%, an excellent thermal stability (94%@200°C), and unexceptionable internal and external quantum efficiencies of 91.7% and 66.4%, which all are superior to characteristics of commercial β-SiAlON:Eu2+ phosphor. Moreover, the white LED fabricated using KAO:Eu2+, Mn2+ to provide green component shows a wide color gamut of 105% National Television System Committee. These results indicate a potential for an application of our material in LCD–LED backlights, and the design of such local relaxation-induced structure provides a significative reference to develop the new narrow-band emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号