首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of postdensification annealing upon microstructures and microwave dielectric characteristics in Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 (x = 0, 0.1, 0.2, and 0.3) complex perovskite ceramics have been investigated. Long‐time annealing at temperatures below the order–disorder transition temperature enhances the cation ordering degree and promotes the ordering domain growth. The most significant improvement of Qf value is obtained together with the suppressed temperature coefficient of resonant frequency in the samples annealed at 1400°C for 12 h, while the dielectric constant decreases slightly. The Qf value of ceramics annealed at 1400°C mainly attributes to the enhanced cation ordering degree, because their low‐energy domain boundaries are not detrimental to the Qf value. As the annealing temperature increases close to the transition temperature, coarse ordering domains with high‐energy boundaries are formed, and then the Qf value steadily decreases because of the inferior domain structure, even the cation ordering degree increases. The microwave dielectric characteristics of Ba((Co0.6?x/2Zn0.4?x/2Mgx)1/3Nb2/3)O3 ceramics are affected by the common function of ordering degree and domain structure. The best combination of microwave dielectric characteristics is obtained in the composition of x = 0.3 after annealing at 1400°C for 12 h: εr = 33.2, Qf = 117 200 GHz, and τf = 8.6 ppm/°C.  相似文献   

2.
Microstructures and microwave dielectric properties of (1?x)Ba((Co0.55Zn0.35Mg0.1)1/3 Nb2/3)O3xBaZrO3 (= 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06) ceramics have been investigated. The 1:2 ordered structure remains in the solid solutions when x is less than 0.03, but the ordering is destabilized. While, the local ordering behavior, which generates from compositional inhomogeneous, is observed in the composition with = 0.04, where the 1:1 ordered phase begins to form. For = 0.05 and 0.06, the solid solutions are comprised of nanometer‐sized 1:1 and 1:2 ordered domains, those are dispersed in a disordered matrix. The lower Qf values of the as‐sintered ceramics mainly because of the lower ordering degrees. BaZrO3 substitution decreases both the annealing time and temperature. The effects of annealing process upon the improvement of Qf values are significant for the lower substitution levels (= 0.01 and 0.02), while only slight effects are determined for high substitution levels (= 0.04, 0.05, and 0.06). The highest Qf value of 84,500 GHz is obtained for 1 mol% BaZrO3 substituted composition, after annealing at 1300°C for 8 h.  相似文献   

3.
The boundaries of 1:2 ordered domains in Ba[(Co, Zn, Mg)1/3Nb2/3]O3 perovskite ceramics are comprehensively studied by high‐resolution transmission electron microscopy (HRTEM) on the base of atomic position simulation. The atomic configurations for four types of twin boundaries are determined. A‐type and B‐type boundary, which lie along (001)c and (110)c planes, respectively, are conservative. C‐type boundary parallels to (111)c plane, while Г‐type boundary is perpendicular to (111)c plane. At C‐type and Г‐type boundary, atomic intersection leads to a buffer layer, among which the B‐site cations are generally disordered. The width of Г‐type boundary is larger than that of C‐type boundary, so is the perturbation to the system. The energy of four types of twin boundaries is proved to be “A‐type & B‐type < C‐type < Г‐type” according to the magnitude of the destabilization to the system. Single antiphase boundary (APB) is considered to be nonconservative. However, when combined with conservative twin boundary, an extra ordered structure with a periodicity of 1.24 nm along [001]c direction and a periodicity of 0.87 nm along [110]c direction forms. The boundary regions are indeed stabilized by the new superlattice.  相似文献   

4.
采用传统固相法制备了(1?x)Ba(Mg1/3Nb2/3)O3?xMg4Nb2O9 [(1?x)BMN?xM4N2,x = 0.003 ~ 0.125] 微波介质陶瓷,研究了相结构、烧结性能与介电性能随 x 的变化规律。结果表明: BMN 与 M4N2 可以两相共存,且二者间存在有限固溶,BMN 的烧结温度及高温稳定性有所降 低。随着 x 的增大,介电常数 εr和谐振频率温度系数 τf逐渐减小,Q × f 值的变化易受到 BMN 有序参数 S 的影响,高度 1:2 有序的 x = 0.026 陶瓷获得了最大 Q × f 值 125000 GHz。综合来看, 在 1320°C 下保温 4 h 烧结的 x = 0.125 样品表现出最佳的微波介电性能:εr = 26.6,Q × f = 111000 GHz,τf = 5 ppm/ºC。  相似文献   

5.
采用传统固相反应法制备了0.6Mg4Nb2O9-0.4SrTiO3复合陶瓷.研究了LiF掺杂对其烧结特性、显微组织和微波介电性能的影响.实验结果表明:通过添加一定量的LiF,可将Mg4Nb2O9/SrTiO3陶瓷的致密化烧结温度降至1100 ℃;其中掺杂1.5wt% LiF、 1100 ℃下烧结5 h的0.6Mg4Nb2O9-0.4SrTiO3陶瓷微波介电性能为:ε=20.6,Q·f=4057 GHz; 样品的微波介电性能与杂相Sr(Ti1-xNbx)O3+δ和残留液相有关.  相似文献   

6.
采用传统固相法制备Nd[(Zn1?xCox)0.5Ti0.5]O3 (0≤x≤0.9)微波介质陶瓷,研究Co2+在B位取代Zn2+对Nd(Zn0.5Ti0.5)O3微波介质陶瓷的结构和微波介电性能的影响. 结果表明,在研究的组分范围内,Nd[(Zn1?xCox)0.5Ti0.5]O3陶瓷均能形成单斜钙钛矿型固溶体,随Co取代量增加,陶瓷的相对介电常数?r逐渐减小,谐振频率温度系数?f逐渐向负值移动,品质因数Q×f先增大后下降,在x=0.3 mol时达到最大值215130 GHz, Q×f大幅增加是有序度作用所致. 在1410℃下烧结4 h, Nd[(Zn0.7Co0.3)0.5Ti0.5]O3陶瓷具有优异的微波介电性能,?r=31.2, Q×f=215130 GHz, ?f=?35.7×10?6℃?1.  相似文献   

7.
《Ceramics International》2016,42(14):15585-15591
(x)Ni0.4Zn0.6Fe2O4+(1−x)Ba0.6Sr0.4TiO3 composite ceramics with x=0.6, 0.7, 0.8, 0.9 and 1 were synthesized by solid state reaction method. The high dense composites have only two phases, i.e., Ni0.4Zn0.6Fe2O4 and Ba0.6Sr0.4TiO3. The permittivity ε′ of the composites decreases slightly with the frequency increasing from 3 MHz to 1 GHz. The permittivity ε′′ of the composites also shows a little increase with frequency in the 3 MHz–1 GHz range. The permeability displays a relaxation resonance within the 3 MHz–1 GHz frequency range. The permeability μ′ increases while the cut-off frequency decreases with the Ni0.4Zn0.6Fe2O4 concentration, obeying the Snoek's law μifr=constant. The permittivity ε′ of the composites decreases with Ni0.4Zn0.6Fe2O4 concentration. The composites have a relatively higher ε′ than the pure Ni0.4Zn0.6Fe2O4 at 1–10 GHz. In the frequency range of 1–10 GHz, the magnetic permeability μ′ reaches its maximum and μ′′ shows a minimum for the composite with x=0.6 in all ceramics. The permeability μ′ of the composites decreases with dc magnetic field at 1–10 GHz. The permeability shows a domain wall resonance, and the resonance frequency shifts to high frequency with the dc magnetic field. The permittivity was also influenced by the dc magnetic field due to a magnetodielectric effect.  相似文献   

8.
Mg4Nb2O9具有与α-Al2O3相同的刚玉型晶体结构,可望成为新一代高Q、低ε基板材料.然而,该材料却具有很大的负谐振频率温度系数(τf=-7.05×10-5/℃),期望通过添加TiO2(τf=4.50×10-4/℃)以达到调整的目的.适量的添加TiO2将Mg4Nb2O9陶瓷的烧结温度降低了约100℃,并增强了陶瓷的性能,微波介电性能与其密度呈线性关系.由于添加的TiO2与Mg5Nb4O15反应形成了(Ng,Ti)5(Nb,Ti)4O15第二相,使得TiO2对该陶瓷τf值的调整作用不显著.1300℃、5h烧结添加质量分数为2.5%的TiO2的Mg4Nb2O9陶瓷具有最佳的性能:εr=13.61,Q·f=196620GHz,τf=-5.04×10-5/℃.  相似文献   

9.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

10.
通过固相反应法合成了Sr0.6Ba0.4Nb2O6陶瓷,并对其进行了结构、介电性能的表征。结果表明Sr0.6Ba0.4Nb2O6陶瓷为四方钨青铜结构单相,其在60℃附近存在一个明显的弥散介电峰,峰值温度随频率向高温偏移,为典型的弛豫铁电相变。室温时,10kHz频率下,其介电常数约为1404,介电损耗为0.03。  相似文献   

11.
0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3–0.1Ba(Ga0.5Ta0.5)O3 (BCZN–BGT) ceramic resonators (quality factor, Q=32,000 at the rate of 3.05 GHz, relative permittivity, εr=35 and temperature coefficient of the resonant, τf=0) have been fabricated which are suitable in terms of cost and performance for base stations supporting third generation architecture. The new compounds are perovskite structured (a=4.09 Å) but exhibit no superlattice reflections at any heat treatment temperature according to X-ray diffraction (XRD). However, annealing and quenching of samples followed by transmission electron microscopy and Raman spectroscopy revealed an order–disorder phase transition at ∼1200 °C. Annealing below this temperature (1100 °C) gave rise to discrete ±1/3{h k l}p and diffuse 1/2{h k l}p superlattice reflections in the same 〈1 1 0〉p zone axis electron diffraction patterns and the presence of F2g and A1g modes in Raman spectra. It is proposed that ±1/3{h k l}p reflections result from 1:2 long-range ordered domains of BCZN whereas the diffuse 1/2{h k l}p reflections arise from short range fcc ordered BGT rich regions at the 1:2 domain boundaries. A short-range ordered fcc superlattice was observed in samples quenched from above the order–disorder phase transition (>1200 °C) which was accompanied by the presence of only the A1g mode in Raman spectra.  相似文献   

12.
采用传统固相反应法制备了Mg4(Nb2-xSbx)O9陶瓷,研究了该材料的烧结性能、物相结构、显微组织和微波介电性能.X射线衍射结果显示,在x小于或等于1.6的范围内,形成了具有α-Al2O3刚玉型晶体结构的连续固溶体,晶轴长度和晶胞体积均随着锑含量的增加而降低.在x等于2.0时,Mg4Sb2O9的物相结构发生了变化,晶轴长度和晶胞体积也发生了突变.当0.4≤x≤O.8时,陶瓷的烧结温度从1400℃降低到了1300℃;而当x≥1.2后,陶瓷的烧结性能和微波介电性能均降低.在1300℃,5h的烧结条件下,Mg4(Nb1.6Sb0.4)O9陶瓷的微波介电常数(εr)为12.26,Q·f为168450 GHz.  相似文献   

13.
Nonstoichiometric Mg2SiO4 forsterite dielectric ceramics with various Mg/Si ratios ( R =2.025, 2.05, and 2.2) were prepared and characterized. The appearance of a MgSiO3 secondary phase could be effectively suppressed by adjusting the nonstoichiometry, and a single-phase forsterite structure was obtained in the present ceramics with Mg/Si ratios of 2.025 and 2.05. The microwave dielectric characteristics were significantly improved in the nonstoichiometric Mg2SiO4 ceramics on eliminating the MgSiO3 secondary phase, where an enhanced Q × f value and a suppressed temperature coefficient of resonant frequency λ f were obtained. The best microwave characteristics were achieved in the nonstoichiometric forsterite ceramics with an Mg/Si ratio of 2.05: ɛ r =7.5, Q × f =114 730 GHz, and λ f =−59 ppm/°C.  相似文献   

14.
Ti-B位置换改性Mg2SiO4陶瓷微结构和微波介电性能的研究中发现,在合成Mg2SiO4陶瓷过程中,Mg2SiO3总是作为第二相出现,Ti的引入能够有效地抑制Mg2SiO3的出现.但Ti不是进入Si-O四面体取代置换Si形成Mg2(Si1-xTixO4固溶体,而是Mg与反应形成Mg2TiO4、Mg2Ti2O5等第二相.Mg2(Si1-xTix)O4陶瓷随着值x增加,介电常数εr从6.8增加到8.1,Qf值也获得显著改善,但谐振频率温度系数不会因Ti引入而得到优化.在x=0.1时,Mg2(Si0.9Ti0.1)O4陶瓷获得优良的微波介电性能:εr=7.4,Qf=73 760GHz,τf=60·10-6/℃.  相似文献   

15.
石锋 《硅酸盐通报》2006,25(4):142-145
A(B'1/3B"2/3)O3型微波介质陶瓷是一种很有前途的信息功能材料,具有复合钙钛矿结构,高频率下Q值较高,可以很好的符合现代通信设备的要求.广泛应用在介质谐振器、滤波器、陶瓷电容器中.本文比较详细地介绍了A(B'1/3B"2/3)O3型微波介质陶瓷材料的结构、性能、制备工艺、发展历史以及研究前景.  相似文献   

16.
MgSiO3掺杂 Ba0.4Sr0.6TiO3陶瓷具有 Ba1-xSrxTiO3、(Ba,Sr)2TiSi2O8、Ba4MgTi11O27和 Mg2TiO4多相结构。MgSiO3低掺量(质量分数≤10%)陶瓷样品具有条形晶粒和细晶粒组成的微结构;随着 MgSiO3掺量增加,陶瓷样品形成晶粒细小、均匀的微结构;当 MgS...  相似文献   

17.
Microstructural effects on the microwave dielectric properties of (Ba0.4Sr0.6)TiO3 (BST) polycrystalline ceramics were investigated, focusing on the grain size. Sintering temperatures between 1350°C and 1500°C have a strong effect on the permittivity (880 < εr < 990), quality factor (570 GHz < Q×f < 1150 GHz), and temperature coefficient of resonant frequency (3920 ppm/°C < τf < 4560 ppm/°C) at microwave frequency (≈1.4 GHz). The tunable permittivity characteristics (measured at 10 kHz), were also found to be sensitive to the sintering process, demonstrating the possibility of tailoring material property by designed processing. In addition, the effect of the sintering process on grain structure was investigated by XRD calculation and Raman scattering characterization. Less confined phonons were believed to contribute to the enhanced microwave performance as an intrinsic effect (grain size effect), for samples with higher sintering temperature and longer dwell time. On the contrary, the macroscopic properties tend to saturate (or deteriorate), for samples at intensified sintering condition, being thought to be dominated by the extrinsic factors (such as the abundant defects in large grains), as confirmed by the SEM observations.  相似文献   

18.
The sintering behaviors and dielectric properties of Ba0.6Sr0.4TiO3 ceramics were investigated as a function of B2O3 and CuO content. The addition of both B2O3 and CuO reduced the sintering temperature of Ba0.6Sr0.4TiO3 about 500°C. It was suggested that a liquid phase BaCu(B2O5) was formed and assisted the densification of Ba0.6Sr0.4TiO3 ceramics. Ba0.6Sr0.4TiO3 ceramics co‐doped with 3.0 mol% B2O3, and 2.0 mol% CuO, sintered at 950°C for 5 h, had a dense microstructure and showed good microwave dielectric properties of a moderate dielectric constant (ε = 1048), low dielectric loss (0.0090) and high tunability (42.2%) at dc electric field of 30 kV/cm.  相似文献   

19.
Ba5Nb4O15 (BNO) ceramics were synthesized by the mechanical alloying method. The transmission electron microscope images of BNO powders revealed rod‐shaped grains. Mechanically alloyed BNO exhibited maximum density of 97.3% and is explained on the basis of Herring's scaling law. Both the dielectric constant and loss tangent show a stable response up to 0.2 GHz. Further, the dielectric response of BNO ceramics measured above 350°C shows relaxation behavior and is explained using Havriliak–Negami equation. The obtained stable dielectric response of BNO is suitable for type I capacitor and dielectric resonator applications.  相似文献   

20.
王浩  陈文  刘涛 《硅酸盐通报》2004,23(4):44-46
用前驱体合成法制备了0.34CaTiO3-0.66Ca(Mg1/3Nb2/3)O3复合钙钛矿型微波介质陶瓷,并研究了烧结温度、烧结时间对材料介电性能的影响.结果表明:CMNT陶瓷在1300℃下保温5h的条件下烧成时,获得较好的微波介电性能,微波介电性能:εr为59.5,Q·f值为29,700GHz(6.7GHz下).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号