首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent MgAl2O4 ceramics were bonded by using CaO-Al2O3-SiO2 (CAS) glass filler. The CAS glass filler exhibited the same thermal expansion behavior as MgAl2O4 ceramic and excellent wetting ability on the surface of MgAl2O4 ceramic. When the cooling rate of 15 °C/min was used, no interfacial reaction was observed and the amorphous brazing seam could be obtained. However, low joining temperature (1250 °C) led to the formation of pores and high joining temperature (1400 °C) resulted in the formation of cracks. Furthermore, the slow cooling rate of 5–10 °C/min induced the crystallization of CaAl2Si2O8 and Mg2Al4Si5O18 due to the dissolution of MgAl2O4 substrate. The optimal flexural strength of 181–189 MPa was obtained when the joining temperature and cooling rate were 1300–1350 °C and 15 °C/min respectively. Moreover, the in-line transmittance of the joint at 1000 nm was 82.1%, which was slightly lower than that of MgAl2O4 ceramic (85.6%).  相似文献   

2.
Ti-doped (0.08, 0.30, and 1.00 atomic% [at.%]) transparent MgGa2O4 ceramics (possessing a high inversion level; i up to 0.8) were fabricated by pulsed electric current sintering, at 950°C, under vacuum for 30–90 min. Optical transmission, emission, and electron paramagnetic resonance spectra were recorded. The maximal transmission level was ∼70% (820 nm), for a thickness of ∼1 mm, which, while not very high, permitted the observation of the optical absorption bands location and profile. Interpretation of the fluorescence spectra suggests that some Ti4+ cations (mostly hexacoordinated) were accommodated by the host despite the scarcity of oxygen in the atmosphere during the sintering process. The Ti3+ cations substitute native ions located in tetrahedral sites, distorting the original Td symmetry toward a D2d symmetry. Comparing the Ti-doped MgGa2O4 (high inversion) and MgAl2O4 (low inversion) spinels, spectral characteristics revealed that a significant increase in the inversion level drives Ti3+ cations from octahedral toward tetrahedral sites. This is reflected in the optical absorption spectra by the disappearance of the band at ∼20 000 cm−1 (detectable in MgAl2O4) in MgGa2O4; the two d–d bands, of MgA2O4, in MgGa2O4 are reduced to a single one, located at 11 800 cm−1. These results, for MgGa2O4, strongly support a similar assignment—of the strong band at 12 800 cm−1, in Ti-doped MgAl2O4—to a tetracoordinated Ti3+. Thus, while in MgAl2O4, Ti3+ appears in both octahedral and tetrahedral coordination and in MgGa2O4 only the latter state is stable. In both spinels, Ti dopant speciates into Ti3+ and Ti4+ cations.  相似文献   

3.
Magnesium aluminate (MgAl2O4) spinel precursor sol was prepared using aluminum nitrate and magnesium nitrate as the precursors for alumina and magnesia, respectively. The obtained sol owned a translucent, homogenous, and stable appearance with a density of 1.19 g/cm3, and at the temperatures above 60 °C, converted to a soft and clear gel. The measured pH of sol was in the range of 3–4, and at the calcination temperature of 1000 °C, the solid content of 6% was reached. TGA/DSC analysis was utilized to study the thermal behavior of the sol. Fourier transforms infrared spectroscopy (FTIR) was applied to recognize the existing bounds in the dried and calcined sol. X-ray diffraction patterns revealed the formation of single-phase MgAl2O4 up to 600 °C. According to the FESEM images, the grain size for the sol calcined at 1000 °C was estimated at around 50 nm.  相似文献   

4.
《Ceramics International》2017,43(17):15246-15253
MgAl2O4 nanoparticles (NPs) were prepared by sol–gel method using aluminium nitrate, magnesium nitrate and citric acid as starting materials, phenolic formaldehyde resin and carbon black as additives. Growth of MgAl2O4 NPs in different heat treatment conditions (temperature, atmosphere, carbon additives and in Al2O3-C system) was investigated. MgAl2O4 NPs were formed at 600 °C in air atmosphere with serious agglomeration of nanoparticles having diameter of approximate 30 nm. The size of MgAl2O4 NPs increased greatly from 40 to 50 nm to several hundreds of nanometres as the temperature was raised from 800 °C to 1400 °C. Partial sintering of NPs was observed upon heating at temperatures higher than 1200 °C in air. In reducing atmosphere, the size of MgAl2O4 NPs (about 30–50 nm) changed slightly with increasing temperature. This was attributed to the dispersion of carbon inclusions in the MgAl2O4 grain boundaries, inducing a steric hindrance effect and inhibiting the growth of particles. MgAl2O4 NPs (30–50 nm) in the Al2O3-C system were in-situ formed at high temperatures with the use of dried precursor gels. MgAl2O4 NPs can contribute to improving the thermal shock resistance of Al2O3-C materials.  相似文献   

5.
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated.  相似文献   

6.
《Ceramics International》2022,48(4):5162-5167
Calcium alumino-titanate (CAT), a secondary material obtained from ferrotitanium slag, was used as a hibonite source to prepare CaAl12O19–MgAl2O4–Al2O3 castables. The restructuring effect of CAT aggregate was compared by replacing tabular alumina aggregates with CAT aggregates of different particle sizes. The effects of CAT particle size on cold mechanical strength and thermal shock resistance of CaAl12O19–MgAl2O4–Al2O3 castables were studied. The results showed that CAT aggregates with particle size of 5–3 or 3–1 mm led to more internal cracks or pores and reduced the cold mechanical strength of the castable samples fired at 1600 °C for 3 h. The use of CAT aggregates with particle size of 1–0 mm led to the formation of a well-bonded CAT aggregate and matrix, improving the cold mechanical strength and thermal shock resistance of the castable samples fired at 1600 °C for 3 h. The enhancement mechanism of fine CAT aggregates in this process was proposed based on the sintering of the matrix–aggregate interface with the formation of Ca(Al, Mg, Ti)12O19.  相似文献   

7.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

8.
Cerium oxide doped with oxides of rare earth elements is a multifunctional material, a wide range of uses which is associated with its unique physicochemical properties. Phase diagrams of multicomponent systems are the physicochemical basis for the creation of new materials with improved characteristics.In this work, phase equilibria in ternary CeO2–La2O3–Dy2O3 and binary La2O3–Dy2O3 systems in the whole concentration range were studied. No new phases have been identified in these systems. An isothermal section of the phase diagram of the CeO2–La2O3–Dy2O3 system at a temperature of 1500 °С is constructed. No new phases have been detected in the system. It was found that in the studied ternary system solid solutions are formed on the basis of (F) modification of CeO2 with structure of fluorite type, monoclinic (B), cubic (C) and hexagonal (A) modifications of Ln2O3.In the La2O3–Dy2O3 binary system (1500–1100 °С) three types of solid solutions are formed: based on hexagonal modification A-La2O3, monoclinic modification B-Dy2O3 and cubic modification C-Dy2O3 separated by two-phase fields (A+B) and (B+C), respectively. The boundaries of the regions of homogeneity of solid solutions based on A-La2O3 are determined by compositions containing 35–40, 20–25, 15–20 mol% Dy2O3 at 1500, 1250, 1100 °C, respectively. From the obtained data it follows that the solubility of Dy2O3 in the hexagonal modification of lanthanum oxide is 39 mol% at 1500 °C, 23 mol. % at 1250 °C and 16 mol% at 1100 °C. The limits of existence of solid solutions based on monoclinic B-modification are determined by compositions containing 30–35, 65–60 (1250 °С), 35–40, 55–60 (1100 °С) 40–45, 70–75 (1500 °C) mol% Dy2O3.In the studied system, with a decrease in temperature from 1500° to 1100°C, there is a decrease in the solubility of La2O3 in the crystal lattice of cubic solid solutions of C-type from 16 to 10 mol%.  相似文献   

9.
《Ceramics International》2017,43(6):5014-5019
MgAl2O4nanoparticles were added to MgO–CaO refractory ceramic composites in the range of 0–8 wt%. Refractory specimens were obtained by sintering at 1650 °C for 3 h in an electric furnace. Refractory specimens were characterized by measurements of bulk density, apparent porosity, hydration resistance, cold crushing strength, crystalline phase formation, and microstructural analysis. Results show that with additions of MgAl2O4 nanoparticles the bulk density of the samples increased. But the apparent porosity and cold crushing strength decreased and increased, respectively with addition MgAl2O4 nanoparticles up to 6 wt% and for further MgAl2O4 nanoparticles, due to the thermal expansion mismatch, the results is reversed. Also, the hydration resistance of the samples was appreciably improved by the addition of MgAl2O4 nanoparticles due to its effect on decreasing the amount of free CaO in the refractory composite and promotion of densification by creating a dense microstructure.  相似文献   

10.
In order to study the performance and feasibility of magnesia-alumina spinel (MgAl2O4) ceramics for thermal storage in solar thermal power generation, MgAl2O4 was prepared by theoretical composition using α-Al2O3 as aluminium source, fused magnesia, magnesite, and light burned magnesia as different magnesium sources and kaolin as additive. The effects of magnesium source and the additive on sintering properties, thermal shock resistance and thermal properties of MgAl2O4 ceramics were researched. The results shown sample A1 (with fused magnesia) sintered at 1670°C possessed the optimum comprehensive properties, the bending strength increased by 7.71% after 30 thermal shock times (room temperature-1000°C, air cooling), the specific heat capacity was 1.05 J/ (g·K). Therefore, the MgAl2O4 ceramics exhibited great potential in high-temperature thermal storage material.  相似文献   

11.
The ethanolaminic salt of citric acid (commercial name Dolapix CE 64) has commonly been used as a dispersant for colloidal based ceramic forming process. In this paper, a surprise was presented that MgAl2O4 spinel slurries consisting of MgAl2O4 spinel nanoparticles and Dolapix CE 64 gelled in air at room temperature spontaneously. The MgAl2O4 spinel slurries with high solid loading (54 vol%) were prepared with Dolapix CE 64 and the green body with up to 57% relative density was obtained. MgAl2O4 transparent ceramics with small grain size (0.92 μm) and high transmittance (81.7% at 600 nm) were fabricated after pre-sintering at 1500°C and hot-isostatic sintering at 1550°C.  相似文献   

12.
《Ceramics International》2022,48(13):18658-18666
Samples of the ternary system MgO–Al2O3–SiO2 with stoichiometric composition in relation to α-cordierite (Mg2Al4Si5O18), consisting of 22.2 mol% MgO, 22.2 mol% Al2O3, and 55.6 mol% SiO2, were activated in a low energy mill with a constant speed of 100 rpm, in an aqueous medium. The precursors used were corundum (Al2O3), silica gel HF254 type 60 (SiO2), and periclase (MgO). The objective of the present study was to evaluate the effect of mechanochemical activation on the solid-state synthesis of α-cordierite, using a low energy ball mill. Another objective was to shed light on the effect of mechanochemical activation on the steps of α-cordierite formation. For this end several grinding conditions were evaluated, varying the time and mass ratio of precursors/grinding elements, as well as calcination at different temperatures between 950 °C and 1350 °C for 2 h. The samples were analyzed for the determination of the formed phases by Infrared (IR) and X-ray Diffraction (XRD). The phases identified in uncalcined samples were brucite (Mg(OH)2), forsterite (Mg2SiO4), enstatite (MgSiO3), spinel (MgAl2O3), amorphous silica (SiO2), corundum (α-Al2O3), and zirconia (monoclinic and tetragonal ZrO2). The lowest temperature corresponding to the formation of α-cordierite (α-Mg2Al4Si5O18) was 1150 °C and a considerable amount of this phase (16.2%) was observed at this temperature, for the sample with the higher mechanochemical activation. In a solid-state reaction, α-cordierite is normally obtained at around 1400 °C, therefore, the formation of this phase at 1150 °C confirms that the mechanochemical activation method, using a low-cost ball mill, is efficient in reducing the solid-state reaction temperature.  相似文献   

13.
Solid oxide fuel cells (SOFCs) operating at intermediate temperature (500°C‐700°C) provide advantages of better durability, lower cost, and wider target application market. In this work, we have studied Sc2O3 (5‐11 mol%) stabilized ZrO2–CeO2 as a potential solid electrolyte for application in IT‐SOFCs. Lower Sc2O3 doping range than the traditional 11 mol% Sc2O3‐stabilized ZrO2 is an interesting research topic as it could potentially lead to an electrolyte with reduced oxygen vacancy ordering, lower cost, and higher mechanical strength. XRD and Raman spectroscopy was used to study the phase equilibrium in ZrO2–CeO2–Sc2O3 system and impedance spectroscopy was done to estimate the grain, grain boundary, and total ionic conductivities. Maximum for the grain and grain‐boundary conductivities as well as the tetragonal‐cubic phase boundary was found at 8‐9 Sc2O3 mol% in ZrO2‐1 mol% CeO2 system. It is suggested that the addition of 1 mol% CeO2 in the ZrO2 host lattice has improved the phase stability of high‐conductivity cubic and tetragonal phases at the expense of low‐conductivity t′‐ and β‐phases.  相似文献   

14.
Highly thermal stability is an essential property for propane dehydrogenation (PDH) catalysts that need to be regenerated frequently in oxidative atmosphere. A kind of hierarchical MgAl2O4 with flower-like morphology is prepared by alcohothermal method and used to support Pt and Pt-Sn. The materials are characterized by ICP-AES, SEM, TEM, XRD, Py-IR, and N2 physi-sorption. Hierarchical MgAl2O4 supported Pt shows great thermal stability under oxidizing atmosphere at 800 °C. Supported Pt-Sn catalyst for PDH shows high stability of performance during 10 cycles of dehydrogenation-regeneration runs. The high stability could originate from the existence of relatively abundant MgAl2O4(111) facets on MgAl2O4.  相似文献   

15.
《Ceramics International》2016,42(16):18215-18222
Porous MgAl2O4 ceramics were prepared via a low cost foam-gelcasting route using MgAl2O4 powders as the main raw material, ammonium polyacrylate as a dispersant, a small amount of modified carboxymethyl cellulose as a gelling agent, and TH-IV polymer as a foaming agent. The effects of additive's content, solid loading and gelling temperature on slurry's rheological behavior were investigated, and microstructures and properties of as-prepared porous MgAl2O4 ceramics examined. Based on the results, the roles played by the foaming agent in the cases of porosity, pore structure, pore size, mechanical properties and thermal conductivity were clarified. Porosity and pore sizes of as-prepared porous MgAl2O4 ceramics increased with increasing the foaming agent from 0.05 to 0.6 vol%. Porous MgAl2O4 ceramics with porosity of 75.1% and average pore size of 266 µm exhibited a compressive strength as high as 12.5±0.8 MPa and thermal conductivity as low as 0.24 W/(m K) (at 473 K).  相似文献   

16.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   

17.
《Ceramics International》2016,42(12):13863-13867
Anatase phase TiO2 (a-TiO2) films have been deposited on MgAl2O4(100) substrates at the substrate temperatures of 500–650 °C by the metal organic chemical vapor deposition (MOCVD) method using tetrakis-dimethylamino titanium (TDMAT) as the organometallic (OM) source. The structural analyses indicated that the TiO2 film prepared at 600 °C had the best single crystalline quality with no twins. The out-of-plane and in-plane epitaxial relationships of the film were a-TiO2(001)||MgAl2O4(100) and TiO2[100]||MgAl2O4[100], respectively. A uniform and compact surface with stoichiometric composition was also obtained for the 600 °C-deposited sample. The average transmittance of all the TiO2 films in the visible range exceeded 91% and the optical band gap of the films varied from 3.31 to 3.41 eV.  相似文献   

18.
《Ceramics International》2021,47(20):28892-28903
LaMgAl11O19-type magnetoplumbite holds great promise to be used above 1300 °C as thermal barrier coatings (TBCs), but its practical application has been restricted because of inferior thermophysical properties. Herein, we focus on optimizing the thermophysical properties of LaMgAl11O19 by simultaneously substituting La3+ and Al3+ ions with Nd3+ and Sc3+ ions, respectively. Results show that the effects of co-substitution on reducing thermal conductivity are pronounced. The thermal conductivities of La1-xNdxMgAl11-xScxO19 (x = 0, 0.1, 0.2, 0.3) ceramics decrease progressively with dopant concentration and a lowest thermal conductivity of 2.04 W/(m·K) is achieved with x = 0.3 at 1000 °C, which is a value superior to pure LMA and even lower than YSZ. The mechanisms behind the lowered thermal conductivity are investigated. Increase of the thermal expansion coefficient is also realized (8.53 × 10−6 K−1 for pure LMA, 9.07 × 10−6 K−1 for x = 0.3, 1300 °C). Most importantly, Nd3+ and Sc3+ combination doping indeed facilitates mechanical properties of La1-xNdxMgAl11-xScxO19 solid solutions as well. It should be noted that Sc3+ doping at Al3+ site plays more effective role in improving thermal properties than Nd3+ does at La3+ site. This work provides a path to simultaneously integrate low thermal conductivity, good phase stability, moderate thermal expansion behavior and excellent mechanical properties on LMA for the next generation TBCs.  相似文献   

19.
Yttria partially stabilized zirconia (~4.0?mol% Y2O3–ZrO2, 4YSZ) has been widely employed as thermal barrier coatings (TBCs) to protect the high–temperature components of gas–turbine engines. The phase stability problem existing in the conventional 4YSZ has limited it to application below 1200?°C. Here we report an excellent zirconia system co–doped with 16?mol% CeO2 and 4?mol% Gd2O3 (16Ce–4Gd) presenting nontransformable feature up to 1500?°C, in which no detrimental monoclinic (m) ZrO2 phase formed on partitioning. It also exhibits a high fracture toughness of ~46?J m?2 and shows high sintering resistance. Besides, the thermal conductivity and thermal expansion coefficient of 16Ce–4Gd are more competent for TBCs applications as compared to the 4YSZ. The combination of properties suggests that the 16Ce–4Gd system could be of potential use as a thermal barrier coating at 1500?°C.  相似文献   

20.
《Ceramics International》2016,42(15):16888-16896
MgO-Nd2Zr2O7composites with ratios of 50–70 vol% MgO were produced via a one-pot combustion synthesis. A suite of characterization techniques, including X-ray diffraction, scanning and transmission electron microscopy were employed to investigate the structural properties while dilatometry, simultaneous thermal analysis and laser flash analysis were used to characterize the thermal properties of the composites. Dense pellets were produced after sintering at 1400 °C with grain sizes between 200 and 500 nm for both phases. The thermal properties of the composites are similar to those produced using standard methods. The composite with 70 vol% MgO was found to have the highest thermal conductivity below 1000 °C, while above this temperature the thermal conductivity was found to be similar and independent of MgO content. This novel synthesis route produces materials which show significant improvements in homogeneity with smaller particle sizes when compared to current standard synthesis techniques without significantly reducing thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号