首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of fluorine and nitrogen substitution for oxygen in aluminosilicate glasses, effectively oxyfluoronitride (OFN) glasses, modified by calcium, calcium–yttrium or calcium–magnesium on thermal and physical/mechanical properties have been compared. Thus, 42 glasses in the Ca–(Mg)–(Y)–Si–Al–O–(N)–(F) system have been prepared and characterized with respect to density (ρ), molar volume (MV), compactness (C), free volume (FV), glass transition temperatures measured by DTA (Tg,DTA) and dilatometry (Tg,dil), dilatometric softening point (TDS), microhardness (μHv) and Young's modulus (E). Gradients of property variation with nitrogen or fluorine substitutions for oxygen are similar for all three different oxyfluoronitride glass systems and are comparable with those reported for other OFN glasses, again indicating independent and additive effects of nitrogen and fluorine. In attempting to further understand how fluorine affects the cross‐link density (CLD) in OFN glasses, it becomes apparent that it is necessary to allow for a greater contribution by aluminum in a modifier role as fluorine content is increased. This modified calculation of CLD values results in good linear fits between Tg and CLD values. This analysis clearly demonstrates and endorses the concepts that thermal properties are related to CLD while physical/mechanical properties are dependent on glass compactness.  相似文献   

2.
Understanding of the extent of cation disorder and its effect on the properties in glasses and melts is among the fundamental puzzles in glass sciences, materials sciences, physical chemistry, and geochemistry. Particularly, the nature of chemical ordering in mixed‐cation silicate glasses is not fully understood. The Li–Ba silicate glass with significant difference in the ionic radii of network‐modifying cations (~0.59 Å) is an ideal system for revealing unknown details of the effect of network modifiers on the extent of mixing and their contribution to the cation mobility. These glasses also find potential application as energy and battery materials. Here, we report the detailed atomic environments and the extent of cation mixing in Li–Ba silicate glasses with varying XBaO [BaO/(Li2O + BaO)] using high‐resolution solid‐state nuclear magnetic resonance (NMR) spectroscopy. The first 17O MAS and 3QMAS NMR spectra for Li–Ba silicate glasses reveal the well‐resolved peaks due to bridging oxygen (Si–O–Si) and those of the nonbridging oxygens including Li–O–Si and mixed {Li, Ba}–O–Si. The fraction of Li–O–Si decreases with an increase in XBaO and is less than that predicted by a random Li–Ba distribution. The result demonstrates a nonrandom distribution of Li+ and Ba+ around NBOs characterized by a prevalence of the dissimilar Li–Ba pair. Considering the previously reported experimental results on chemical ordering in other mixed‐cation silicate glasses, the current results reveal a hierarchy in the degree of chemical order that increases with an increase in difference in ionic radius of the cation in the glasses [e.g., K–Mg (~0.66 Å) ≈Ba–Mg (~0.63 Å) ≈Li–Ba (~0.59 Å) > Na–Ba (~0.33 Å) > Na–Ca (~0.02 Å)]. The 7Li MAS NMR spectra of the Li–Ba silicate glasses show that the peak maximum increases with increasing XBaO, suggesting that the average Li coordination number and thus Li–O distance decrease slightly with increasing XBaO, potentially leading to an increased activation energy barrier for Li diffusion. Current experimental results confirm that the degree of chemical ordering due to a large difference in ionic radii controls the transport properties of the mixed‐cation silicate glasses.  相似文献   

3.
The model developed by Makishima and Mackenzie (M–M) may yield reasonable estimates for the E‐modulus of a range of glasses. In the M–M model the bonding enthalpy and packing densities present in the compounds that form the glass are taken as input for the calculation. This study shows that a more accurate estimate can be obtained by incorporating in the model structural information from MAS‐NMR data. Specifically, we have determined by means of the impulse excitation technique (IET) the E‐modulus for ionomer glasses with composition 4.5SiO2–3Al2O3–1.5P2O5–3MO–2MF2, where M denotes the alkaline earth metal (M = Mg, Ca, Sr, or Ba). The MAS‐NMR structural analysis shows that substitution of calcium by barium or strontium results in a disrupted network, whereas magnesium leads to a more packed network. In this study we will show how a higher coordination state of the aluminum as determined by 27Al MAS‐NMR can be taken into account in the model. This leads to rather small corrections of the estimates for these particular glasses. In contrast, the 19F MAS‐NMR study shows the presence of Al–F–M(n) or Al–F and Si–F–M(n) types of environment in the glass network. Al–F and Si–F bonds are not accounted for in the E‐modulus estimate by the M–M model. We will show how by incorporating the new bonding of F with Al and Si a significantly improved estimate of the E‐modulus is obtained compared with the original model.  相似文献   

4.
Thirty glasses of composition (in equivalent percent) 20‐xCa:xY:50Si:30Al:(100‐y‐z)O:yN:zF, with x = 0, 10; y = 0, 10, 20, and z = 0, 1, 3, 5, 7 were prepared by melting and casting. All glasses were X‐ray amorphous. Glass molar volumes (MV) decreased with nitrogen substitution for oxygen for all fluorine contents and, correspondingly, glass fractional compactness increased. Fluorine substitution of oxygen had virtually no effect on molar volume or fractional glass compactness for the three nitrogen contents tested. Young's modulus and microhardness were virtually unaffected by fluorine substitution for oxygen while nitrogen substitution for oxygen caused increases in these two properties. Glass‐transition temperature and dilatometric‐softening point values all decreased with increasing fluorine substitution levels, while increasing nitrogen substitution caused values for these thermal properties to increase. Correspondingly, the thermal expansion coefficient increased with fluorine and decreased with nitrogen substitution levels. Using property value differences between glasses containing fluorine and the corresponding glass containing 0 eq.% F enabled 24 data points to be used to determine the effect of fluorine on Tg,dil and TDS. The trends were linear with a gradient for both properties of the order of ?22°C (eq.% F)?1. For the nitrogen effect, 20 data points were analyzed for trend effects. As expected from earlier work, all trends had good linearity. Gradients were for Tg,dil and TDS +2.5°C (eq.% N)?1, which are fairly similar to previous results in oxynitride systems. All of the data collected and its analysis clearly shows that the substitution effects of fluorine for oxygen and nitrogen for oxygen are independent and additive with the fluorine substitution. The property trends of the glasses are discussed in terms of their implications for glass structure.  相似文献   

5.
Alkaline earth oxynitride glasses of (Ca, Mg)–Si–Al–O–N with different CaO/(CaO + MgO) molar ratios (0, 0.25, 0.5, 0.75, and 1) were successfully prepared using the sol-gel method, and their structural compositions were characterised by Raman and FT-IR techniques. The glass dynamic properties of thermal expansion coefficient, glass transition temperature (Tg), and static properties of density, molar volume, Vickers hardness and compressive strength were systematically measured and analysed. The results showed that the static properties exhibited an overall regular change as the CaO/(CaO + MgO) ratio gradually increased, while the dynamic properties had an obvious mixed alkaline earth effect, which represented the appearance of an extreme value point in CaO/(CaO + MgO) mole ratios of 0.25 and 0.75, respectively. The typical thermal expansion coefficient and Tg of mixed alkaline earth oxynitride glasses deviated far from the linear connection between single alkaline earth oxynitride glasses. Raman spectra and infrared spectra revealed that the ratio value of the Q3/(Q2+Q4) decreased (Qn: n = no. of bridging anions joining SiO4 tetrahedra) in the mixed alkaline earth oxynitride glasses with increasing the amount of Ca, confirming that Ca decreased the crosslinking between individual tetrahedra via the transformation of Q3 species into Q2 and Q4 species.  相似文献   

6.
Er–Si–Al–O–N glasses have been prepared with cation ratio Er:Si:Al = 3.45:3:2 containing various amounts of nitrogen (N = 0, 5, 8, 15 and 22 equiv.%). Glass properties such as microhardness, glass transition temperature and dilatometric softening temperature were measured and it was found that these properties increased linearly with increasing nitrogen content. Glasses were then characterised using Raman spectroscopy in order to obtain information about the structure of these glasses. Deconvolution of peaks in the Raman spectra of Er–Si–Al–O–N glasses revealed that, as nitrogen content increases then the proportion of Q3 species decreases and there is a corresponding increase in the proportion of Q4 species (Qn: n = no. of bridging anions joining SiO4 tetrahedra), confirming that nitrogen increases the crosslinking between individual tetrahedra via the transformation of Q3 oxide species into Q4 oxynitride species.  相似文献   

7.
In this article, we investigate the mixed alkaline‐earth effect in a silicate glass series with varying the molar ratio of [MgO]/([CaO]+[MgO]). This effect manifests itself as a minimum in Vickers microhardness (HV), coefficient of thermal expansion (CTE), and isokom temperatures at 1012(Tg) and 102 Pa·s, and as a maximum in liquid fragility. To probe the structural origin of the mixed alkaline‐earth effect in CTE and Hv, we conducted the Raman measurements. In contrast to the aluminosilicate glasses, the present glass series exhibit a negative deviation of shift of peak position at ~1100 cm?1 from a linear additivity, indicating the role of the aluminum speciation in affecting the vibration modes. By fitting the Vogel–Fulcher–Tamann equation to the high‐temperature viscosity data, we found a near‐linear increase of the fractional free volume with the gradual substitution of Ca by Mg, confirming the dynamic structural mismatch model describing the mixed modifier effect. This work gives insight into the mixed modifier effect in glassy systems.  相似文献   

8.
The field strength of modifier cations in boron‐containing oxide glasses has important but complex effects on boron coordination, and has long been known to have major effects on glass and liquid properties. With well‐constrained compositional and fictive temperature information in three binary borate glass series, we report how different modifier cations (Na+, Ba2+, Ca2+) affect boron coordination (11B MAS NMR), as well as glass transition temperatures and configurational heat capacities (DSC). Using estimated reaction enthalpies for converting a [4]B to a [3]B with an NBO from previous studies, we compare boron coordinations in glasses with different modifier cations on an isothermal basis. Temperature and modifier cation effects can thus be isolated. At low modifier contents [R = (Na2,Ca,Ba)O/B2O3<0.45], N4 is systematically higher in the order Na>Ba>Ca, suggesting the enhanced stabilization of NBO for the divalent cations, especially for the smaller Ca2+. At higher R values, N4 for Na borates drops below values for Ca and Ba borates. The trend in N4 with modifier field strength reverses at high R values (~ > 0.7), with Ca > Ba > Na. The transition may be related to the enhanced stabilization of [4]B‐O‐[4]B groups by higher field strength cations in NBO‐rich glasses in which boron is the primary network component.  相似文献   

9.
We examine the impact of the glass network-modifier cation field strength (CFS) on ion irradiation-induced mechanical property changes in borosilicate (BS) glasses for the ternary M2O–B2O3–SiO2 systems with M = {Na, K, Rb} and the quaternary [0.5M(2)O–0.5Na2O]–B2O3–SiO2 systems with M = {Li, Na, K, Rb Mg, Ca, Sr, Ba}. 11B nuclear magnetic resonance (NMR) experiments on the as-prepared BS glasses yielded the fractional population of four-coordinated B species (B[4]) out of all {B[3], B[4]} groups in the glass network, along with the fraction of B[4]–O–Si linkages out of all B[4]–O–Si/B bonds. Both parameters correlated linearly with the (average) CFS of the M+ and/or {M(2)+, Na+} cations. Both the nanoindentation-derived hardness and Young's modulus values of the glasses reduced upon their irradiation by Si2+ ions, with the property deterioration decreasing linearly with increasing Mz+ CFS, that is, for higher Mz+⋅⋅⋅O interaction strength. The irradiation damage of the glass network also increased linearly with the fraction of B[4]–O–Si linkages, which are the second weakest in the structure after the Mz+⋅⋅⋅O bonds. Our results underscore the advantages of employing BS glasses with high-CFS cations for enhancing the radiation resistance for nuclear waste storage.  相似文献   

10.
The effect of the average ionic potential ξ = Ze/r of the network modifier cations on crack initiation resistance (CR) and Young's modulus E has been measured for a series of alkaline-earth aluminoborosilicate glasses with the compositions 60SiO2–10Al2O3–10B2O3–(20−x)M(2)O–xM’O (0 ≤ x ≤ 20; M, M’ = Mg, Ca, Sr, Ba, Na). Systematic trends indicating an increase of CR with increasing ionic potential, ξ, have been correlated with structural properties deduced from the NMR interaction parameters in 29Si, 27Al, 23Na, and 11B solid state NMR. 27Al NMR spectra indicate that the aluminum atoms in these glasses are essentially all four-coordinated, however, the average quadrupolar coupling constant <CQ> extracted from lineshape analysis increases linearly with increasing average ion potential computed from the cation composition. A similar linear correlation is observed for the average 29Si chemical shift, whereas the fraction of four-coordinate boron decreases linearly with increasing ξ. Altogether the results indicate that in pure alkaline-earth boroaluminosilicate glasses the crack resistance/E-modulus trade-off can be tailored by the alkaline-earth oxide inventory. In contrast, the situation looks more complicated in glasses containing both Na2O and the alkaline-earth oxides MgO, CaO, SrO, and BaO. For 60SiO2–10Al2O3–10B2O3–10MgO–10Na2O glass, the NMR parameters, interpreted in the context of their correlations with ionic potentials, are consistent with a partial network former role of the MgO component, enhancing crack resistance. Altogether the presence of MgO in aluminoborosilicate glasses helps overcome the trade-off issue between high crack resistance and high elasticity modulus present in borosilicate glasses, thereby offering additional opportunities for the design of glasses that are both very rigid and very crack resistant.  相似文献   

11.
Two series (N-9 and N-18 series) of zirconia-doped Y–Si–Al–O–N oxynitride glasses and glass-ceramics were designed. Nominal compositions of the glass samples in equivalent percent (eq%) are xZr: (24–0.25x)Y: (15–0.25x)Al: (61–0.5x)Si: 91O: 9 N and xZr: (24–0.25x)Y: (15–0.25x)Al: (61–0.5x)Si: 82O: 18 N (x=0, 2, 4, 6), respectively. The obtained samples were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Densities, Vickers hardness, fracture toughness, glass transition temperature, and thermal expansion coefficient data were established for each sample. Effect of Zr and N content on glass network structure, thermal and mechanical properties was investigated. It was found that the addition of zirconia is effective in preparing Y–Si–Al–O–N oxynitride glasses with lower glass transition temperature and higher hardness.  相似文献   

12.
The structure of soda‐lime alumino‐borosilicate glass was studied using molecular dynamics simulations of samples of varying compositions containing ~20 000 atoms each. Pair distribution functions (PDFs) of cations to oxygen were used for comparison to available experimental data to evaluate consistency between simulations and experiment. Additional PDFs and coordination of the network forming cations (Al/B/Si) to network modifiers (Ca/Na) were examined, which is difficult to measure experimentally. The results are consistent with available experimental data regarding cation‐oxygen bond lengths and network former to oxygen coordination numbers. Si and Al are predominantly 4‐coordinated, with a small concentration of overcoordinated species similar to experimental data. B varied as 3‐coordinated, BO3, and 4‐coordinated, BO4, as a function of the amount of Ca2+ and Na+ present, the ratio of Al2O3 to B2O3, and the fictive temperature of the sample, similar to experimental data. The simulations provide new information regarding the locations on the network modifiers to the +3 cations, Al and B. For instance, one Al ion can have multiple Na within 4 Å, but also the Na can be within 4 Å of several +3 cations. Such results would indicate a greater complexity of local structure that goes beyond the stoichiometric one +1 modifier ion near one +3 network former or one +2 modifier near two +3 formers in tetrahedral sites.  相似文献   

13.
Highly thermal stable Si–N‐doped BAM (BaMgAl10O17: Eu2+) phosphors have been successfully synthesized by a mechanochemically assisted solid‐state reaction method. Mechanical milling greatly improved the amount of Si–N pairs substituted for Al–O pairs in BAM lattice>. Si–N incorporation improves the photoluminescence (PL) properties and the color purity, reduces the thermal quenching, and most importantly, increases the thermal stability of the BAM phosphors significantly. The interpretation of the positive influence of Si–N doping was attributed to the local structure of the produced phosphors, which was analyzed with the aid of first‐principles density functional calculations. This analysis showed that the substitution of Al–O pairs with Si–N pairs should preferentially occur in the boundary between the spinel layer and the conduction layer of the BAM phosphor, leading to a compression of the conduction layer. Eu2+ ions prefer to substitute the N‐coordinated Ba2+ ions in the lattice of Si–N‐doped BAM phosphors, leading to a strong Eu–N bonding. The results of these calculations agree fairly well with the results recorded experimentally, specifically the electron paramagnetic resonance (EPR) spectra, the X‐ray absorption fine structure (XAFS), thermoluminescence spectra (TL), and decay behaviors.  相似文献   

14.
Oxynitride glasses combine a high refractoriness, with Tg typically >850°C, and remarkable mechanical properties in comparison with their parent oxide glasses. Their Young's modulus and fracture toughness reach 170 GPa and 1.4 MPa m.5, respectively. Most reports show good linear relationships between glass property values and nitrogen content. There is a clear linear dependence of Young's modulus and microhardness on fractional glass compactness (atomic packing density). They also have a better resistance to surface damage induced by indentation or scratch loading. The improvements stem from the increase of the atomic network cross-linking—because of three-fold coordinated nitrogen—and of the atomic packing density, despite nitrogen being lighter than oxygen and the Si–N bond being weaker than the Si–O bond. For constant cation composition, viscosity increases by ∼3 orders of magnitude as ∼17 eq.% oxygen is replaced by nitrogen. For rare earth oxynitride glasses with constant N content, viscosity, Young's modulus, Tg, and other properties increase with increasing cation field strength (decreasing ionic radius). Research continues to find lighter, stiffer materials, including glasses, with superior mechanical properties. With higher elastic moduli, hardness, fracture toughness, strength, surface damage resistance, increased high temperature properties, oxynitride glasses offer advantages over their oxide counterparts.  相似文献   

15.
We explore the formation and composition–structure–property correlations of transparent Ca–Al–Si–O–N glasses, which were prepared by a standard melt-quenching technique using AlN as the nitrogen source and incorporating up to 8 at.% of N. Their measured physical properties of density, molar volume, compactness, refractive index, and hardness—along with the Young, shear, and bulk elastic moduli—depended roughly linearly on the N content. These effects are attributed primarily to the improved glass-network cross-linking from N compared to O, rather than the formation of higher-coordination AlO5 and AlO6 groups, where 27Al magic-angle-spinning nuclear magnetic resonance experimentation revealed that aluminum is predominately present in tetrahedral coordination as AlO4 units. Yet, several physical properties, such as the refractive index along with the bulk, shear, and Young's elastic moduli, increase concomitantly with the Al content of the glass. We discuss the incompletely understood mechanical–property boosting role of Al as observed both herein and in previous reports on oxynitride glasses, moreover suggesting glass-composition domains that are likely to offer optimal mechanical properties.  相似文献   

16.
Glasses in the Na2O–CaO–SrO–ZnO–SiO2 system have previously been investigated for suitability as a reagent in Al‐free glass polyalkenoate cements (GPCs). These materials have many properties that offer potential in orthopedics. However, their applicability has been limited, to date, because of their poor strength. This study was undertaken with the aim of increasing the mechanical properties of a series of these Zn‐based GPC glasses by doping with nitrogen to give overall compositions of: 10Na2O–10CaO–20SrO–20ZnO–(40?3x)SiO2xSi3N4 (x is the no. of moles of Si3N4). The density, glass‐transition temperature, hardness, and elastic modulus of each glass were found to increase fairly linearly with nitrogen content. Indentation fracture resistance also increases with nitrogen content according to a power law relationship. These increases are consistent with the incorporation of N into the glass structure in threefold coordination with silicon resulting in extra cross‐linking of the glass network. This was confirmed using 29Si MAS‐NMR which showed that an increasing number of Q2 units and some Q3 units with extra bridging anions are formed as nitrogen content increases at the expense of Q1 units. A small proportion of Zn ions are found to be in tetrahedral coordination in the base oxide glass and the proportion of these increases with the presence of nitrogen.  相似文献   

17.
To design suitable mold fluxes for the casting of high‐Al steels, the structure of mold fluxes based on CaO–SiO2, CaO–SiO2–Al2O3, and CaO–Al2O3 was examined by Raman spectroscopy and magic‐angle spinning nuclear magnetic resonance. The results showed that Si atoms are replaced by Al atoms as the network formers with the increase in Al2O3 in the mold fluxes. This converts the silicate slags (CaO–SiO2 mold fluxes) into aluminosilicates slags (CaO–SiO2–Al2O3 or CaO–Al2O3 mold fluxes). The F? ions in the mold flux containing Al2O3 are classified into three categories, according to function: Bridging F's, Nonbridging F's, and Free‐F's. The Al3+ ion holds three distinct coordination environments: IVAl, VAl, and VIAl. The addition of F affects the coordination environment of Al3+ to form AlO3F and AlO2F2 that accommodate the network structure of slags. The network structure in the CaO–SiO2 mold fluxes is mainly connected through Si–O–Si linkage. However, the network structure of the mold fluxes containing elevated content of Al2O3 is mainly connected through Si–O–Si, Al–O–Al, Al–O–Si, and Al–F–Al linkages. Hence, the structural characteristics of high‐Al steels mold fluxes must be considered during the designing step of the mold fluxes.  相似文献   

18.
The article reports on the structural dependence of crystallization in Na2O–Al2O3–B2O3–P2O5–SiO2-based glasses over a broad compositional space. The structure of melt-quenched glasses has been investigated using 11B, 27Al, 29Si, and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, while the crystallization behavior has been followed using X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. In general, the integration of phosphate into the sodium aluminoborosilicate network is mainly accomplished via the formation of Al–O–P and B–O–P linkages with the possibility of formation of Si–O–P linkages playing only a minor role. In terms of crystallization, at low concentrations (≤5 mol.%), P2O5 promotes the crystallization of nepheline (NaAlSiO4), while at higher concentrations (≥10 mol.%), it tends to suppress (completely or incompletely depending on the glass chemistry) the crystallization in glasses. When correlating the structure of glasses with their crystallization behavior, the MAS NMR results highlight the importance of the substitution/replacement of Si–O–Al linkages by Al–O–P, Si–O–B, and B–O–P linkages in the suppression of nepheline crystallization in glasses. The results have been discussed in the context of (1) the problem of nepheline crystallization in Hanford high-level waste glasses and (2) designing vitreous waste forms for the immobilization of phosphate-rich dehalogenated Echem salt waste.  相似文献   

19.
《Ceramics International》2017,43(5):4197-4204
X-ray amorphous glasses of composition (in equivalent percent) 15Ca:15Mg: 55Si:15Al:(100-x-y)O:xN:yF with x=0, 10, 15 and y=0, 1, 3, 5, were prepared by melting and casting. The effects of oxygen substitution by fluorine and/or nitrogen on the physical, mechanical, thermal and optical properties of the glasses have been investigated. Molar volume, fractional glass compactness, microhardness, Young's Modulus, glass-transition temperature, dilatometric-softening point and refractive index increased linearly with nitrogen substitution for oxygen, whereas molar volume and thermal expansion coefficient decreased linearly with nitrogen increase. In contrast, all properties except glass-transition temperature and dilatometric-softening point, are virtually unaffected by fluorine substitution for oxygen. Significant and linear, decreases in thermal properties occurred with increasing fluorine substitution level. All the data collected and its analysis clearly showed that the substitution effects of fluorine for oxygen on the studied properties of the glasses of the system with general formula Ca-Mg-Si-Al-O-(N)-(F) are totally independent and additive with respect to the substitution effects of nitrogen for oxygen on glass properties.  相似文献   

20.
High-alumina containing high-level waste (HLW) will be vitrified at the Waste Treatment Plant at the Hanford Site. The resulting glasses, high in alumina, will have distinct composition-structure-property (C-S-P) relationships compared to previously studied HLW glasses. These C-S-P relationships determine the processability and product durability of glasses and therefore must be understood. The main purpose of this study is to understand the detailed structural changes caused by Al:Si and (Al + Na):Si substitutions in a simplified nuclear waste model glass (ISG, international simple glass) by combining experimental structural characterizations and molecular dynamics (MD) simulations. The structures of these two series of glasses were characterized by neutron total scattering and 27Al, 23Na, 29Si, and 11B solid-state nuclear magnetic resonance (NMR) spectroscopy. Additionally, MD simulations were used to generate atomistic structural models of the borosilicate glasses and simulation results were validated by the experimental structural data. Short-range (eg, bond distance, coordination number, etc) and medium-range (eg, oxygen speciation, network connectivity, polyhedral linkages) structural features of the borosilicate glasses were systematically investigated as a function of the degree of substitution. The results show that bond distance and coordination number of the cation-oxygen pairs are relatively insensitive to Al:Si and (Al + Na):Si substitutions with the exception of the B-O pair. Additionally, the Al:Si substitution results in an increase in tri-bridging oxygen species, whereas (Al + Na):Si substitution creates nonbridging oxygen species. Charge compensator preferences were found for Si-[NBO] (Na+), [3]B-[NBO] (Na+), [4]B (mostly Ca2+), [4]Al (nearly equally split Na+ and Ca2+), and [6]Zr (mostly Ca2+). The network former-BO-network former linkages preferences were also tabulated; Si-O-Al and Al-O-Al were preferred at the expense of lower Si-O-[3]B and [3]B-O-[3]B linkages. These results provide insights on the structural origins of property changes such as glass-transition temperature caused by the substitutions, providing a basis for future improvements of theoretical and computer simulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号