首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the Gibbs free energy minimum principle and Factsage software, the thermodynamic phase diagram for the SiCl4–NH3–C3H6–H2–Ar system was calculated. The effects of temperature, dilution ratio of H2, total pressure on product types and distribution regions of reacted solid products were discussed. The results show that: (1) The area of SiC–Si3N4 increases at first, then decreases with the rising of temperature and reaches the maximum value at 1273.15 K. (2) The ratio of C/Si is the main factor for the deposition of SiC in the double phase of SiC–Si3N4. (3) The preferred deposition conditions of Si3N4 are: T=1173.15 K, H2:SiCl4=10:1, and PTotal=0.01 atm. Taking the deposition of SiC into consideration, the deposition of Si3N4 influences the formation of Si–C–N directly. (4) According to the influencing factors of depositing SiC and Si3N4, the suitable parameter for Si–C–N deposition can be determined. (5) Through the experimental verification, it can be demonstrated that Si–C–N can be obtained by low-pressure chemical vapor deposition (CVD), its product being amorphous and mainly constituted by Si–N and Si–C bonds. The obtained Si–C–N ceramics can transform to α-Si3N4 and SiC nano-crystal when heat-treated at 1773.15 K in N2 for 2 h.  相似文献   

2.
3.
Reaction‐bonded Si3N4–SiC and Si3N4‐bonded ferrosilicon nitride, with Si powder, SiC particles and Fe3Si–Si3N4 particles as raw materials, respectively, are prepared in flame‐isolation nitridation shuttle kiln with flowing N2 at 1723K. There is columnar β‐Si3N4 in both Si3N4–SiC and Si3N4‐bonded ferrosilicon nitride. However, fibrous α‐Si3N4 is only observed in Si3N4–SiC and Si3N4‐bonded ferrosilicon nitride contains much more Si2N2O than Si3N4–SiC. By analyzing the oxidation thermodynamics of Si and Si3N4, it is known that in the process of producing Si3N4–SiC, Si is oxidized first to gaseous SiO and fibrous α‐Si3N4 is generated with SiO and N2. The existence of SiO is the reason of low silicon nitridation rate. But in the process of producing Si3N4‐bonded ferrosilicon nitride, Si3N4 is easier to be oxidized than Si and Si2N2O is generated on the surface of Si3N4 hexagonal prisms in ferrosilicon nitride particles. Meanwhile, Si in raw materials forms new ferrosilicon alloys with Fe3Si, which decreases the temperature of liquid appearance and blocks some open pores in the samples, which stops the matter loss of nitridation. Liquid ferrosilicon alloys favors β‐Si3N4 generation from Si direct nitridation and fibrous α‐Si3N4 transformation, which used to exist in ferrosilicon nitride raw materials.  相似文献   

4.
To tailor a new electromagnetic wave (EMW) absorbing material with lower reflection coefficient (RC) and larger operating frequency band, the CVD Si3N4–SiCN composite ceramics were prepared from SiCl4–NH3–C3H6–H2–Ar system and then annealed at the temperatures of 1400–1700°C in N2 atmosphere. Effect of the annealing temperatures on the microstructure, phase composition, permittivity, and microwave‐absorbing properties of the ceramic were investigated. Results showed that the CVD Si3N4–SiCN ceramics gradually crystallized into nanosized SiC grains, Si3N4 grains and graphite (T ≤ 1600°C), and then the grains grew up at T = 1700°C. The permittivity, dielectric loss, and electrical conductivity of as‐annealed CVD Si3N4–SiCN ceramics (T ≤ 1600°C) increased firstly due to the formation of conductivity and polarity network and the increase in nanograin boundary, and then decreased at 1700°C because of the growth of nanograins and the disappearance of nanograin boundary. The minimal RC and effective absorption bandwidth of the as‐annealed CVD Si3N4–SiCN ceramic at 1600°C was ?41.67 dB at the thickness of 2.55 mm and 3.95 GHz at the thickness of 3.05 mm, respectively, demonstrating that the totally crystallized CVD Si3N4–SiCN ceramic (T = 1600°C) had the superior microwave‐absorbing ability.  相似文献   

5.
Sintered reaction‐bonded Si3N4 ceramics with equiaxed microstructure were prepared with TiO2–Y2O3–Al2O3 additions by rapid nitridation at 1400°C for 2 hours and subsequent post‐sintering at 1850°C for 2 hours under N2 pressure of 3 MPa. It was found that α–Si3N4, β–Si3N4, Si2N2O, and TiN phases were formed by rapid nitridation of Si powders with single TiO2 additives. However, the combination of TiO2 and Y2O3–Al2O3 additives led to the formation of 100% β–Si3N4 phase from the nitridation of Si powders at such low temperature (1400°C), and the removal of Si2N2O phase. As a result, dense β–Si3N4 ceramics with equiaxed microstructure were obtained after post‐sintering at high temperature.  相似文献   

6.
The Si/B/C/N/H polymer T2(1), [B(C2H4Si(CH3)NH)3]n, was reacted with different amounts of H3Al·NMe3 to produce three organometallic precursors for Si/B/C/N/Al ceramics. These precursors were transformed into ceramic materials by thermolysis at 1400 °C. The ceramic yield varied from 63% for the Al-poor polymer (3.6 wt.% Al) to 71% for the Al-rich precursor (9.2 wt.% Al). The as-thermolysed ceramics contained nano-sized SiC crystals. Heat treatment at 1800 °C led to the formation of a microstructure composed of crystalline SiC, Si3N4, AlN(+SiC) and a BNCx phase. At 2000 °C, nitrogen-containing phases (partly) decomposed in a nitrogen or argon atmosphere. The high temperature stability was not clearly related to the aluminium concentration within the samples. The oxidation behaviour was analysed at 1100, 1300, and 1500 °C. The addition of aluminium significantly improved the oxide scale quality with respect to adhesion, cracking and bubble formation compared to Al-free Si(/B)/C/N ceramics. Scale growth rates on Si/B/C/N/Al ceramics at 1500 °C were comparable with CVD–SiC and CVD–Si3N4, which makes these materials promising candidates for high-temperature applications in oxidizing environments.  相似文献   

7.
Si3N4–SiC composite ceramics used for volumetric receivers were fabricated by pressureless sintering of micrometer SiC, Si3N4, andalusite, and other minor additions powders. Mechanical, thermal expansion, thermal conductivity, and thermal shock resistance properties were tested at different sintering temperatures. The best sintering temperature of optimum formula A2 is 1360°C, and the bending strength reaches 79.60 Mpa. And moreover, its thermal expansion coefficient is 6.401 × 10?6/°C, thermal conductivity is 7.83 W/(m K), and no crack occurs even subjected to 30 cycles thermal shock with a bending strength increase rate of 4.72%. X‐ray diffraction results show that the phase constituents of the sintered products mainly consist of SiC, Si3N4, mullite, and quartz. Microstructure that is most appropriate and exhibits maximal thermal shock resistance was detected using SEM. The porosity of Si3N4–SiC ceramic foam prepared from formula A2 is 95%, which provides a rapid and steady action for the receiver. The evaluation of the present foam shows that Si3N4–SiC ceramic composite is a good candidate for volumetric receivers.  相似文献   

8.
Y–Si–O–N quaternary oxynitrides (Y5Si3O12N, Y4Si2O7N2, YSiO2N, Y2Si3O3N4, and Y3Si5ON9) are recognized as important secondary grain‐boundary phases in silicon nitride and believed to have important impacts on the high‐temperature mechanical properties and thermal conductivity of Si3N4 ceramic. In this work, equilibrium crystal structures, theoretical mechanical properties (second‐order elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, and Vickers hardness) of the five quaternary phases are calculated using first‐principle total energy calculations. Meanwhile, temperature dependence of thermal conductivities of all five compounds is obtained based on Debye–Clarke model and Slack equation. On the basis of theoretical prediction, we establish the relationship between the componential (cation/anion or cation/cation ratios) and structural characteristics (bonding configurations) and mechanical/thermal properties. Our results are expected to provide helpful guidelines to improve the performances of Y–Si–O–N ceramics, and further guide the optimization of mechanical and thermal properties of Si3N4 by properly tailoring the secondary grain‐boundary phases.  相似文献   

9.
It is generally accepted that SiC layers are often involved in the adhesion efficiency of chemical vapour deposition (CVD) diamond films on Si-containing substrates. Si3N4–SiC composite substrates with different amounts of SiC particles (0–50 wt%) were then used for diamond deposition. Samples were produced by pressureless sintering (1750°C, N2 atmosphere, 2–4 h). The diamond films were grown on a commercial MPCVD reactor using H2/CH4 mixtures. Despite there being no special substrate pre-treatment, the films were densely nucleated when SiC was added (Nd≈1×1010 cm−2) with primary nanosized (∼100 nm) particles, followed by a less dense (Nd≈1×106 cm−2) secondary nucleation. Indentation experiments with a Brale tip of up to 588 N applied load corroborated the benefit of SiC inclusion for a strong adhesion. The low thermal expansion coefficient mismatch between Si3N4 and diamond resulted in very low compressive stresses in the film, as proved by micro-Raman spectroscopy.  相似文献   

10.
Porous Si3N4‐Si2N2O‐BN ceramic was fabricated at 1750°C using Si3N4, BN, and (NH4)2HPO4 as starting materials. During the sintering process, oxygen from the decomposed products of (NH4)2HPO4 would bond Si and N in the liquid phase to form Si2N2O. The microstructure and properties of the porous ceramics were investigated. With the (NH4)2HPO4 content varied from 10 to 50 vol.%, porosity of the porous Si3N4‐Si2N2O‐BN ceramic increased from 43.5% to 51%. The microstructure, mechanical, and dielectric properties was well controlled by adjusting (NH4)2HPO4 contents. The present technique offers a more simple way of synthesizing porous Si3N4‐Si2N2O‐BN ceramics.  相似文献   

11.
The combined effect of carbon and Fe-Si alloys on Si3N4 was explored by heat treating Si3N4 materials at 1500?°C and 1600?°C in flowing nitrogen. The phase compositions and microstructures were characterized by XRD and SEM, respectively. The reaction degree was analysed based on the mass variation in the system. Combined with a thermodynamic assessment, the reaction mechanism was studied and proposed. The results show that the coexistence of Fe-Si alloys and carbon accelerates the phase transformation from Si3N4 to SiC and worsens the strength of Si3N4 materials. Fe-Si alloys accelerate the deposition of CO gas to free carbon and accelerate the decomposition of Si3N4 to Si. The in situ-formed Si can react with carbon, thus accelerating the thermodynamic and kinetic formation of SiC. Along with the growth of pores and the deterioration of the wettability of Fe-Si alloys during this process, the microstructure changes from a network constituted by Si3N4 columns/whiskers to porous SiC particles with weak linkages, which leads to the failure of Si3N4 materials. Therefore, the combined effect of Fe-Si alloys and carbon is harmful for Si3N4 materials at 1500–1600?°C.  相似文献   

12.
Single‐crystal β‐Si3N4 particles with a quasi‐spherical morphology were synthesized via an efficient carbothermal reduction‐nitridation (CRN) strategy. The β‐Si3N4 particles synthesized under an N2 pressure of 0.3 MPa, at 1450°C and with 10 mol% unique CaF2 additives showed good dispersity and an average size of about 650 nm. X‐ray photoelectron spectroscopy analysis revealed that there was no SiC or Si–C–N compounds in the β‐Si3N4 products. Selected‐area electron‐diffraction pattern and high‐resolution image indicated single crystalline structure of the typical β‐Si3N4 particles without an obvious amorphous oxidation layer on the surface. The growth mechanism of the quasi‐spherical β‐Si3N4 particles was proposed based on the transmission electron microscopy and energy dispersive X‐ray spectroscopy characterization, which was helpful for controllable synthesis of β‐Si3N4 particles by CRN method. Owing to the quasi‐spherical morphology, good dispersity, high purity, and single‐crystal structure, the submicro‐sized β‐Si3N4 particles were promising fillers for preparing resin‐based composites with high thermal conductivity.  相似文献   

13.
Herein, Si3N4 powders of comparatively high α‐phase but with distinct morphologies, especially α‐Si3N4 fibers, were successfully prepared by a developed combustion synthesis (CS) strategy. Different proportions of Fe and Fe2O3 were innovatively doped in reactants as additives to control the phase constitution and their relative percentage, as well as morphologies of final microstructures. One step further, the effects of Fe‐contained impurities on the CS process were rationally proposed and verified based on a series of meticulous designed experiments. It turns out that two contradictory effects of metal Fe on the formation of α‐Si3N4 synergistically play vital roles in the CS reaction. The existence of metal Fe can accelerate the crystallization of the amorphous SiO2, which act as protection layer outside the Si powders and subsequently promote the generation of gaseous SiO. These gaseous SiO easily reacts with N2 and eventually form α‐Si3N4. On the other hand, the formation of β‐Si3N4 will be promoted by the assistance of some liquid phases, and in this case, they mainly come from the reaction between Fe and Si. For this study, when the content of doped Fe is below 2 mol%, the prior effect on promoting α‐phase content is pronounced. Otherwise, the latter dominates the CS process as the content of Fe additive is further increased above 2 mol%. In a different way, Fe2O3 mainly encourages the formation of β phase through the large amount of newly generated liquid phases, although the reduced SiO2 and Fe may still promote the α/β ratio on some extent.  相似文献   

14.
Porous Si3N4/SiC ceramics with high porosity were prepared via nitridation of Si powder, using SiC as the second phase and Y2O3 as sintering additive. With increasing SiC addition, porous Si3N4/SiC ceramics showed high porosity, low flexural strength, and decreased grain size. However, the sample with 20wt% SiC addition showed highest flexural strength and lowest porosity. Porous Si3N4/SiC ceramics with a porosity of 36–45% and a flexural strength of 107‐46MPa were obtained. The linear shrinkage of all porous Si3N4/SiC ceramics is below 0.42%. This study reveals that the nitridation route is a promising way to prepare porous Si3N4/SiC ceramics with favorable flexural strength, high porosity, and low linear shrinkage.  相似文献   

15.
SiC14-CH4-H2系统沉积碳化硅动力学与微结构   总被引:1,自引:1,他引:0       下载免费PDF全文
Silicon carbide was prepared from SiCl4-CH4-H2 gaseous precursors by isothermal, isobaric chemical vapor deposition (CVD) at atmospheric pressure and temperatures ranging from 900°C to 1100°C. Kinetic studies showed that carbosilane of SiH2Cl2, SiHCl3 and SiCl2 formed from decomposition of SiCl4 and CH4 contributed to the deposition of hexangular facet and granular pebble structured SiC. An average apparent activation energy of 152 kJ•mol-1 was determined. The overall CVD process was controlled not only by the surface reactions but also by complex gas phase reactions. The as-deposited thin film was characterized using scanning electron microscopy, X-ray diffraction and transmission electron microscopy, these analysis showed that the deposited thin film consisted of pure phase of the β-SiC, the growth morphology of β-SiC differs from hexangular facet to granular pebble struc-tures, which varied with substrate length and CVD temperature.  相似文献   

16.
Porous Si3N4-bonded SiC ceramics with high porosity were prepared by the reaction-sintering method. In this process, Si3N4 was synthesized by the nitridation of silicon powder. The X-ray diffraction (XRD) indicated that the main phases of the porous Si3N4-bonded SiC ceramics were SiC, α-Si3N4, and β-Si3N4, respectively. The contents of β-Si3N4 were increased following the sintering temperature. The morphology of Si3N4 whiskers was investigated by scanning electron microscope (SEM), which was shown that the needle-like (low sintering-temperature) and rod-like (higher sintering-temperature) whiskers were formed, respectively. From low to high synthesized temperature, the highest porosity of the porous Si3N4 bonded SiC ceramic was up to 46.7%, and the bending strength was ~11.6?MPa. The α-Si3N4 whiskers were derived from the reaction between N2 and Si powders, the growth mechanism was proved by Vapor–Solid (VS). Meanwhile, the growth mechanism of β-Si3N4 was in accordance with Vapor–Solid–Liquid (VSL) growth mechanism. With the increase of sintering temperature, Si powders were melted to liquid silicon and the α-Si3N4 was dissolved into the liquid then the β-Si3N4 was precipitated successfully.  相似文献   

17.
In this present work, Si3N4 powders with high α‐phase contents and distinct crystal morphologies were prepared via a promising approach of combustion synthesis (CS), using Si powders with different particle sizes as reactants. The influence of Si particle size on phase composition and crystal morphologies in the products was systematically investigated. Two unique crystal morphologies, radial‐spheroidal‐cluster and flowerlike, were observed in the Si3N4 products. The crystal growth mechanisms of Si3N4 granules in the CS system with disparate Si have been proposed based on experiments and thermokinetic calculations. As conclusion, the α‐phase content in the final product was synergetically dominated by the vaporization process of Si particles and the α–β phase transformation of Si3N4 during the after‐burn period. Si3N4 powders with high α‐phase content can be obtained from Si powders with an appropriate particle size.  相似文献   

18.
《Ceramics International》2022,48(22):33066-33071
Si2N2O ceramic, an emerging functional and structural material, has a wide range of applications. However, the preparation of pure-phase Si2N2O powder remains challenging due to the mass transfer resistance and undesirable side reactions in the conventional methods. Herein, a novel molecular approach combined with the decomposition process has been developed to synthesize pure-phase Si2N2O powders. The hydrated Si(NH)2 precursors were synthesized through the chemical vapor deposition (CVD) of SiCl4, NH3, and humidified N2 in a fluidized bed reactor (FBR) in two steps. Then, the hydrated Si(NH)2 precursors were decomposed into amorphous and subsequently transformed into crystalline powders under different temperatures and time. It was found that the molar ratio of N/O of the hydrolyzed Si(NH)2 can be controlled by N2 ventilation time and played an important role in synthesizing high pure Si2N2O powder. When it varied from 2.5:1 to 2:1, pure-phase Si2N2O powder was obtained after heat treatment at 1300–1500 °C, which features a big tolerance for N/O ratios. This newly developed method offered a chance for the preparation of high-quality Si2N2O powder with high efficiency and low cost.  相似文献   

19.
Selective laser reaction sintering techniques (SLRS) techniques were investigated for the production of near net-shape non-oxide ceramics including SiC, Si3N4, and HfC/SiC composites that might be compatible with prevailing powder bed fusion additive manufacturing processes. Reaction bonded layers of covalent ceramics were produced using in-situ reactions that occur during selective laser processing and layer formation. During SLRS, precursor materials composed of metal and/or metal oxide powders were fashioned into powder beds for conversion to non-oxide ceramic layers. Laser-processing was used to initiate simultaneous chemical conversion and local interparticle bonding of precursor particles in 100 vol% CH4 or NH3 gases. Several factors related to the reaction synthesis process—precursor chemistry, gas-solid and gas-liquid synthesis mechanisms, precursor vapor pressures—were investigated in relation to resulting microstructures and non-oxide yields. Results indicated that the volumetric changes which occurred during in-situ conversion of single component precursors negatively impacted the surface layer microstructure. To circumvent the internal stresses and cracking that accompanied the conversion of Si or Hf (that expands upon conversion) or SiOx (that contracts during conversion), optimized ratios of the precursor constituents were used to produce near isovolumetric conversion to the product phase. Phase characterization indicated that precipitation of SiC from the Si/SiO2 melt formed continuous, crack-free, and dense layers of 93.7 wt% SiC that were approximately 35 µm thick, while sintered HfC/SiC composites (84.2 wt% yield) were produced from the laser-processing of Hf/SiO2 in CH4. By contrast, the SLRS of Si/SiOx precursor materials used to produce Si3N4 resulted in whisker formation and materials vaporization due to the high temperatures required for conversion. The results demonstrate that under appropriate processing conditions and precursor selection, the formation of near net-shape SiC and SiC composites might be achieved through single-step AM-compatible techniques.  相似文献   

20.
Si3N4–TiN–SiC composites were synthesized from TiSi2 and SiC mixtures via the combustion reaction under high nitrogen pressure. The nitridation mechanism of TiSi2 was analyzed. The results show that the nitridation of TiSi2 produced TiN and Si firstly, and Si3N4 phase was formed by the further nitriding of Si. The molten eutectic phase and its agglomeration between Si and TiSi2 formed one core-shell structure and affected the nitridation process. Under higher nitrogen pressure, the nitridation reaction was complete and the relatively dense Si3N4–TiN–SiC composites obtained. TEM observation revealed inhomogeneous Si3N4 grain size, amorphous phase, cavities, microcracks and dislocations, and graphite from the nitridation of SiC in the microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号