首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precursor glasses for the ferroelectric barium bismuth titanate (BaBi4Ti4O15) (BBiT) have been prepared by the melt‐quench technique in the SiO2–K2O–BaO–Bi2O3–TiO2 (SKBBT) glass system with and without Eu2O3 doping. BBiT glass–ceramic (GC) nanocomposites have been derived from these glasses by controlled heat treatment. The structural properties of the GCs have been investigated using X‐ray diffraction (XRD), electron microscopy (FE‐SEM, TEM), and FT‐IR reflectance spectroscopy. FE‐SEM images show the formation of randomly oriented hexagonal rod‐shaped crystals of 200–400 nm and TEM images show 10–20 nm crystallites. FT‐IR spectra exhibit the characteristic bands of BBiT at 480, 585, and 680 cm?1. The activation energy of crystallization (Ec) varies from 295 to 307 kJ/mol. The dielectric constants (εr) of glass and GC nanocomposites increase with an increase in frequency up to 3.0 MHz and then decrease up to 5.0 MHz. Heat‐treated GCs show higher εr values, in the range 25–55, compared to the precursor glasses (20–37). Dielectric losses (tan δ) for all the samples increase from 0.005 to 1.0 with an increase in frequency from 100 Hz to 5.0 MHz. Excitation spectra were recorded by monitoring emission at 613 nm corresponding to the 5D07F2 transition. An intense 466 nm excitation band corresponding to the 7F05D2 transition was observed. Emission spectra were then recorded by exciting the glass samples at 466 nm. Longer heat‐treatment times led to a 15‐fold increase in the intensity of the red emission at 612 nm, attributed to the segregation of Eu3+ ions into the low phonon energy BBiT crystallites. The hardness (3.8–5.1 GPa) and fracture toughness (1.8–3.5 MPam0.5) values obtained in the GCs are high and suitable for structural applications.  相似文献   

2.
The glass–ceramics containing a rarely achievable nanocrystalline SrIINbIVO3 phase in the 53.75SiO2–18.25K2O–9Bi2O3–9SrO–9Nb2O5–0.5CeO2–0.5Eu2O3 (mol%) glass system were prepared by the melt‐quench technique followed by a two‐stage controlled heat treatment. The unusual oxidation state of Nb in SrIINbIVO3 crystal is 4+ and upon heat treatment of the samples at lower temperature of 500°C for several hours, the glass composition and chemical environment around Nb ions played a key role for the formation of SrIINbIVO3 in the glass–ceramics. The microstructure of the glass–ceramics was studied using TEM and FESEM. The TEM images advocate 10–40 nm crystallite size of SrIINbIVO3. FTIR study confirms that all the samples consist of SiO4, BiO3, BiO6, and NbO6 structural units. The refractive index at different wavelengths was found to vary in the range 1.7105–1.7905 and increase with increase in heat‐treatment time. The luminescence spectra of Eu3+‐doped glass and glass–ceramics were recorded at 465 nm excitation wavelength and the luminescence intensity is found to be increased with heat‐treatment time due to increase in crystallinity. The high intensity ratio of 5D07F2 to 5D07F1 indicates that the Eu3+‐doped nanocrystalline SrIINbIVO3 glass–ceramics are promising candidate materials as red‐light source.  相似文献   

3.
Eu3+‐doped transparent phosphate precursor glasses and glass‐ceramics containing TbPO4 nanocrystals were successfully fabricated by a conventional high‐temperature melt‐quenching technique for the first time. The formation of TbPO4 nanocrystals was identified through X‐ray diffraction, transmission electron microscopy, high‐resolution transmission electron microscopy, selected‐area electron diffraction, and photoluminescence emission spectra. The obvious Stark splitting of 5D07FJ (J = 1, 2, 4) transitions of Eu3+and the increase of internal quantum efficiency indicate the incorporation of Eu3+ into TbPO4 nanocrystals. Energy transfer from Tb3+ ions to Eu3+ ions was investigated using excitation and emission spectra at room temperature. The glass‐ceramics obtained have more efficient Tb3+ to Eu3+ energy transfer than the glass, and so serve as good hosts for luminescent materials.  相似文献   

4.
Novel Eu3+‐doped transparent oxyfluoride glass‐ceramics containing BaLuF5 nanocrystals were successfully fabricated by melt‐quenching technique for the first time. Analyses of XRD patterns prove that the new precipitated glass‐ceramics are crystallized in cubic BaLuF5 based on isostructural BaGdF5. Intense red emissions observed in glass ceramics are attributed to the enrichment of Eu3+ ions into BaLuF5 nanocrystals. Besides, obvious stark splitting emissions, low forced electric dipole 5D07F2 transition, and long decay lifetimes of Eu3+ ions also evidence the partition of Eu3+ ions into BaLuF5 nanocrystals with low phonon energy. Such transparent material may find applications in photonics.  相似文献   

5.
Cr3+–Yb3+ codoped transparent glass‐ceramics containing Y3Al5O12 nanocrystals were prepared by heat treatment of as‐prepared glass sample and characterized by X‐ray diffraction and transmission electron microscopy. The efficient energy transfer from Cr3+ to Yb3+ ions through multi‐phonon‐assisted process was confirmed by the luminescence spectrum and fluorescent lifetime measurements. When excited by the lights from a solar simulator in the wavelength region of 400–800 nm, greatly enhanced near‐infrared emission around 1 μm was achieved from Cr3+–Yb3+ codoped glass ceramic compared with that from as‐prepared glass and Ce3+–Yb3+ codoped glass ceramic. These results demonstrate that the Cr3+–Yb3+ codoped glass ceramic is a promising material for enhancement of the efficiency of solar energy utilization.  相似文献   

6.
Transparent glass‐ceramics containing Ce3+: Y3Al5O12 phosphors and Eu3+ ions were successfully fabricated by a low‐temperature co‐sintering technique to explore their potential application in white light‐emitting diodes (WLEDs). Microstructure of the sample was studied using a scanning electron microscope equipped with an energy dispersive X‐ray spectroscopy. The impact of co‐sintering temperature, Ce3+: Y3Al5O12 crystal content and Eu3+ doping content on optical properties of glass‐ceramics were systematically studied by emission, excitation spectra, and decay curves. Notably, the spatial separation of these two different activators in the present glass‐ceramics, where Ce3+ ions located in YAG crystalline phase while the Eu3+ ones stayed in glass matrix, is advantageous to the realization of both intense yellow emission assigned to Ce3+: 5d→4f transition and red luminescence originating from Eu3+: 4f→4f transitions. As a result, the quantum yield of the glass‐ceramic reached as high as 93%, and the constructed WLEDs exhibited an optimal luminous efficacy of 122 lm/W, correlated color temperature of 6532 K and color rendering index of 75.  相似文献   

7.
A series of Dy3+–Eu3+‐codoped ZrO2 nanocrystals with tetragonal and cubic symmetry was synthesized via a wet chemical reaction. When the Eu3+‐doping content was fixed, the crystal structure could be stabilized from the mixed phase to single cubic phase by simply adjusting the content of Dy3+. The cubic ZrO2:Dy3+–Eu3+ nanoparticles exhibited spherical and nonagglomerated morphology. The effective phonon energy of cubic ZrO2:5%Dy3+–5%Eu3+ was calculated to be 445 cm?1, which is lower than the previously reported results. Extensive luminescence studies of ZrO2:Dy3+–Eu3+ as a function of Dy3+ content demonstrated that the dopant concentration and its site symmetry play an important role in the emissive properties. Under 352 nm excitation, the increment of Dy3+ concentration in ZrO2:Dy3+–Eu3+ led to an increase in orange (590 nm) and red (610 nm) emissions of Eu3+ ions, which are attributed to the 5D07FJ(J = 1, 2) transitions of Eu3+ ions. This increment is possibly due to the efficient energy transfer (ET) 4F9/2:Dy3+5D0:Eu3+. The phosphors can generates light from yellow through near white and eventually to warm white by properly tuning the concentration of Dy3+ ions through the ET and change in site symmetry. These phosphors may be promising as warm‐white‐/yellow‐emitting phosphors.  相似文献   

8.
Eu3+‐doped cesium barium borate glass with the composition of Cs2O·2BaO·3B2O3 was prepared by the conventional melt quenching method. The glass‐ceramic sample was obtained from the re‐crystallization of the as‐made glass to change the amorphous glass into a crystalline host. This reduces the Eu3+ in glass to Eu2+ ions resulting in a yellow‐emitting phosphor of Eu2+‐activated CsBaB3O6. The samples were investigated by the XRD patterns and SEM micrograph, the optical absorption, the photoluminescence spectra, and decay curves. The as‐made glass has only Eu3+ centers. Under the excitation of blue or near‐UV light, Eu2+‐doped CsBaB3O6 presents yellow‐emitting color from the allowed inter‐configurational 4f–5d transition in the Eu2+ ions. The maximum absolute luminescence quantum efficiencies of Eu2+‐doped CsBaB3O6 phosphor was measured to be 47% excited at 430 nm light at 300 K. By taking into account the efficient excitation in blue wavelength region, this new phosphor could be a potential yellow‐emitting phosphor for an application in white light‐emitting diodes fabricated with blue chips.  相似文献   

9.
A Pr3+‐doped transparent oxyfluoride glass‐ceramic containing Ca5(PO4)3F nanocrystals was prepared by melt quenching and subsequent thermal treatment. The crystallization phase and morphology of the Ca5(PO4)3F nanocrystals were investigated by X‐ray diffraction and transmission electron microscope, respectively. The volume fraction of the Ca5(PO4)3F nanocrystals in the glass‐ceramic is about 10% and the fraction of Pr3+ ions incorporated into the Ca5(PO4)3F nanocrystals is about 22%. The peak absorption cross sections at 435 and 574 nm increase up to 128% and 132% after crystallization, respectively. The peak stimulated emission cross sections of the 3P03H4 blue laser channel and 3P03F2 red laser channel for the glass‐ceramic are 4.95 × 10?20 and 29.8 × 10?20 cm2, respectively. The spectral properties indicate that the glass‐ceramic is a potential visible laser material.  相似文献   

10.
Triaquatris(acetyl acetonate)europium(III) [Eu(acac)3] at 1, 5, 10, and 15% was doped in diglycidyl methacrylic (DGMA) resin, and their luminescent properties in the solid state are reported. These systems were characterized with elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy. On the basis of TGA data, the thermal stability of the DGMA/Eu(acac)3x% system was similar to that of the polymer, except at the highest concentration (15%). The DSC results indicated that the new systems were chemically stable and underwent the cure process before decomposition. The emission spectra of the Eu3+/acetyl acetonate complex doped in DGMA, recorded at 298 and 77 K, exhibited the characteristic bands arising from the 5D07FJ transitions (J = 0–4). The luminescence intensity decreased with an increasing precursor concentration in the doped polymer. The system doped at a low concentration (1% Eu3+ complex) presented more luminescence efficiency than those doped at 5, 10, and 15%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 406–412, 2006  相似文献   

11.
In this work, the silver or gold nanoparticle single‐existing and co‐existing tellurite glasses doped with Eu3+ were prepared, and the influence of gold or silver nanoparticles on the photoluminescence of tellurite glasses doped with Eu3+ were investigated. The photoluminescence of tellurite glasses doped with Eu3+ was enhanced by the surface plasmon absorption of gold or silver nanoparticles, and the maximum luminescence enhancement factors caused by the silver and gold nanoparticles are 4.8 and 3.5 factors, respectively. The differentiation of luminescence enhancement mechanisms caused by the gold or silver nanoparticles was demonstrated. The enhanced luminescence mechanism of the Au nanoparticle single‐existing tellurite glasses doped with Eu3+ was from the increasing of radiative decays rate caused by the Au nanoparticles. The excitation field enhancement caused by the Ag nanoparticles was responsible for the luminescence enhancement of the Ag single‐existing tellurite glasses doped with Eu3+. About 4.2‐factor luminescence enhancement was observed in the Ag and Au nanoparticle co‐existing tellurite glasses doped with Eu3+, which is attributed to the increasing of radiative decays rate and excitation field enhancement caused by the Au and Ag nanoparticles.  相似文献   

12.
Quaternary alkaline earth zinc‐phosphate glasses in molar composition (40 ? x)ZnO – 35P2O5 – 20RO – 5TiO2xEu2O3 (where x=1 and R=Mg, Ca, Sr, and Ba) were prepared by melt quenching technique. These glasses were studied with respect to their thermal, structural, and photoluminescent properties. The maximum value of the glass transition temperature (Tg) was observed for BaO network modifier mixed glass and minimum was observed for MgO network modifier glass. All the glasses were found to be amorphous in nature. The FT‐IR suggested the glasses to be in pyrophosphate structure, which matches with the theoretical estimation of O/P atomic ratio and the maximum depolymerization was observed for glass mixed with BaO network modifier. The intense emission peak was observed at 613 nm (5D07F2) under excitation of 392 nm, which matches well with excitation of commercial n‐UV LED chips. The highest emission intensity and quantum efficiency was observed for the glass mixed with BaO network modifier. Based on these results, another set of glass samples was prepared with molar composition (40 ? x)ZnO – 35P2O5 – 20BaO – 5TiO2xEu2O3 (x=3, 5, 7, and 9) to investigate the optimized emission intensity in these glasses. The glasses exhibited crystalline features along with amorphous nature and a drastic variation in asymmetric ratio at higher concentration (7 and 9 mol%) of Eu2O3. The color of emission also shifted from red to reddish orange with increase in the concentration of Eu2O3. These glasses are potential candidates to use as a red photoluminsecent component in the field of solid‐state lighting devices.  相似文献   

13.
A CaO–Al2O3–SiO2 (CAS)‐based glass interlayer was developed for joining of porous alumina membrane tubes with dense alumina in this work. The results indicated that the interfacial microstructure of the joint was highly sensitive to the quench rate from the joining temperature, which rendered crystallization of CaTiSiO5 at a fast quench rate but CaAl2Si2O8 at a slow quench rate due to the interfacial reaction between the CAS glass interlayer and the substrate. An extra crystallization treatment during quench, i.e., dwelling at 800°C–900°C for 2 h, produced a multiphase interlayer consisting of LiAlSi2O6, CaTiSiO5, and CaAl2Si2O8. All joints were evaluated by the thermal shock test. The results showed that the LiAlSi2O6‐containing joint interlayer had much lower thermal shock resistance than those without LiAlSi2O6.  相似文献   

14.
Novel Ho3+ doped highly transparent NaYbF4 glass‐ceramics were successfully fabricated by melt‐quenching technique. Their structural and luminescent properties were systemically investigated by XRD, TEM, absorption spectra, upconversion spectra, and lifetime measurements. Excited by 980‐nm laser, samples exhibit characteristic emissions of Ho3+. Impressively, the luminescent color can be tuned easily from red for precursor glass to green for glass‐ceramics. Such novel phenomenon was elaborately investigated and is owing to the reduced multiphonon nonradiative relaxation and enhanced cross‐relaxation of Ho3+ in NaYbF4 nanocrystals after crystallization. Our results indicate that NaYbF4 transparent glass‐ceramics is an excellent host for upconversion.  相似文献   

15.
We developed a new Li2O–Al2O3–SiO2 (LAS) ultra‐low expansion glass‐ceramic by nonisothermal sintering with concurrent crystallization. The optimum sintering conditions were 30°C/min with a maximum temperature of 1000°C. The best sintered material reached 98% of the theoretical density of the parent glass and has an extremely low linear thermal expansion coefficient (0.02 × 10?6/°C) in the temperature range of 40°C–500°C, which is even lower than that of the commercial glass‐ceramic Ceran® that is produced by the traditional ceramization method. The sintered glass‐ceramic presents a four‐point bending strength of 92 ± 15 MPa, which is similar to that of Ceran® (98 ± 6 MPa), in spite of the 2% porosity. It is white opaque and does not have significant infrared transmission. The maximum use temperature is 600°C. It could thus be used on modern inductively heated cooktops.  相似文献   

16.
Eu3+‐doped Mg3‐xEux(BO3)2 (x = 0.000, 0.005, 0.010, 0.020, 0.050, and 0.100) phosphors were synthesized for the first time by solution combustion synthesis method, which is a fast synthesis method for obtaining nano‐sized borate powders. The optimization of the synthesis conditions of phosphor materials was performed by TG/DTA method. These phosphors were characterized by XRD, FTIR, SEM‐EDX, and photoluminescence, PL analysis. The XRD analysis exhibited that all of the prepared ceramic compounds have been crystallized in orthorhombic structure with space group Pnnm. Also, the influence of europium dopant ions on unit cell parameters of host material was analyzed using Jana2006 program and the crystalline size was determined by Debye‐Scherrer's formula. The luminescence properties of all Eu3+‐doped samples were investigated by excitation and emission spectra. The excitation spectra of Mg3‐xEux(BO3)2 phosphors show characteristic peak at 420 nm in addition to other characteristic peaks of Eu3+ under emission at 613 nm. The emission spectra of Eu3+‐doped samples indicated most intensive red emission band dominated at 630 nm belonging to 5D07F2 magnetic dipole transition. Furthermore, the optimum or quenching concentration of Eu3+ ion has been determined as x = 0.010 showed the maximum emission intensity when it was excited at 394 nm.  相似文献   

17.
β‐NaGdF4:Yb3+,Er3+ upconversion (UC) microcrystals were prepared by a facile hydrothermal process with the assistance of ethylene diamine tertraacetic acid (EDTA). The β‐NaGdF4 UC microcrystal morphology was controlled by changing the doses of EDTA and NaF. Uniform hexagonal structure can be obtained at the 2 mmol EDTA and 9‐10 mmol NaF. The UC emissions of β‐NaGdF4:Yb3+,Er3+ microcrystals were tuned by the variation of Eu3+ doping level (0%‐5%), where the red/green intensity ratio decreased with the Eu3+ concentration increase. It was found on the base of rate equations that with the Eu3+ doping, the energy back transfer process 2H11/2/4S3/2 (Er3+) → 4I13/2 (Er3+) decreased. In addition, an energy‐transfer process from 4F7/2 (Er3+) to 5D1 (Eu3+) and a cross relaxation process of 7H9/2 (Er3+) + 5D0 (Eu3+) → 4F7/2 (Er3+) + 5D2 (Eu3+) were proposed and verified by rate equations, which dominated the energy‐transfer mechanism between Er3+ and Eu3+, resulted in the spectra tuning of β‐NaGdF4:Yb3+,Er3+. The results suggested that the color tuning of β‐NaGdF4:Yb3+,Er3+,Eu3+ UC microcrystals would have potential applications in such fields as flat‐panel displays, solid‐state lasers, and photovoltaics.  相似文献   

18.
Multiphase borosilicate glass‐ceramics represent one candidate to contain radioactive nuclear waste separated from used nuclear fuel. In this work, the thermophysical properties from room temperature to 1273 K were investigated for four different borosilicate glass‐ceramic compositions containing waste loadings from 42 to 60 wt% to determine the sensitivity of these properties to waste loading, as‐fabricated microstructure, and potential evolutions in microstructure brought about by temperature transients. The thermal expansion, specific heat capacity, thermal diffusivity, and thermal conductivity are presented. The impact of increasing waste loading is shown to have a small but measurable effect on the thermophysical properties between the four compositions, contrasted to a much greater impact observed when transitioning from predominantly crystalline to amorphous systems. Thermal cycling below 1273 K was not found to measurably impact the thermophysical properties of the compositions investigated here.  相似文献   

19.
Intense 2.0 μm emission of Ho3+ has been achieved through Yb3+ sensitization in fluorogermanate glass‐ceramic (GC) containing LaF3 pumped with 980 nm laser diode (LD). The observation of concurrent emissions at 538, 650, and 1192 nm points to the additional deexcitation routes based on infrared‐to‐visible upconversion processes and Ho3+:5I65I8 radiative transition. Comparative investigations of photoluminescent spectra and decay curves have indicated the effective role of Ce3+ ions in enhancing the 2.0 μm fluorescence along with suppressing the occurrence of these concurrent emissions. This would offer a promising approach to develop compact and efficient 2.0‐μm laser systems.  相似文献   

20.
Heavily Eu3+‐doped BaCa2In6O12 phosphors were prepared by conventional solid‐state reaction, and its structural properties were investigated by means of Rietveld refinement method using an X‐ray source. XRD patterns confirm the hexagonal phase of BaCa2In6O12: Eu3+ phosphors. The obtained spectrum data indicate that the emission spectra of Ba1?xEuxCa2In6O12 samples excited at 393 nm exhibit a series of shaped peaks assigned to the 5D0,1,2,37FJ (J = 0,1,2,3,4) transitions. Luminescence from the higher excited states, such as 5D1, 5D2, and 5D3, were also observed even though the Eu3+ concentration was up to x = 0.4. More importantly, the Ba1?xEuxCa2In6O12 phosphor still emits white luminescence, when the Eu3+ ion concentration is up to x = 0.07 before concentration quenching is observed, which shows that the phosphor is a promising single‐phase phosphor for near ultraviolet (NUV) light‐emitting diodes (LED). Furthermore, the temperature's impact on white luminescent properties was studied. Finally, a white‐light‐emitting diodes (W‐LEDs) fabricated with the Ba0.95Eu0.05Ca2In6O12 phosphor incorporated with an encapsulant in ultraviolet LEDs (λmax = 395 nm) is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号