首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural modification is an important means to induce redshift of Ce3+ emission in garnet phosphor. We intend to design and synthesize garnet oxynitride compounds which combine attributes of rigidity inherited from garnet structure and of high covalence characteristic of oxynitride compounds. However, impurity phase usually occurs in the nitridation of garnet phosphor, due to the low solubility of nitrogen in oxides. We herein exploit the cooperative cation substitution strategy to facilitate the incorporation of nitrogen in Y3Al5O12. It is found that partial substitution of Y3+‐Altet3+ pairs by Mg2+‐Si4+ pairs can diminish the phase instability caused by the replacement of Altet3+‐O2? by Si4+‐N3?. A novel pure garnet phase oxynitride phosphor MgY2Al3Si2O11N:Ce3+ with a higher substitution content of N has been obtained and the successful incorporation of N in the garnet phosphor is confirmed by the Rietveld refinements of XRD, XPS, and TEM. The emission and excitation spectra indicate that the blue‐light‐excitable MgY2Al3Si2O11N:Ce3+ phosphor exhibited a bright yellow‐orange emission peaking at 570 nm, which is redshifted by 28 nm when compared to YAG:Ce3+. The garnet oxynitride phosphor exhibit excellent thermal stability with high quantum efficiency and is a promising candidate for warm white LED.  相似文献   

2.
A single‐phase multicolor emitting phosphor, Ca3Al2O6:Ce3+,Li+, was prepared by a solid‐state reaction. When the Ce3+ concentration is lower than 0.030 (molar ratio in Ca3Al2O6), yellow and greenish blue emissions can be observed under the excitation by a blue and a near UV light, respectively. The yellow‐emitting phosphor possesses an internal quantum efficiency of 89%. Additional purplish blue emission turns up when Ce3+ concentrations are higher than 0.040. Tunable emission bands are originated from Ce3+ ions on different Ca sites in Ca3Al2O6. Although the emission band of purplish blue or greenish blue overlaps the excitation band of yellow emission, and the distances between the unlike Ce3+ ions are in the range of electric dipole–dipole interaction, no energy transfer is observed. Furthermore, emission wavelengths for the yellow, greenish blue, and purplish blue emission show little change upon increasing Ce3+ concentrations.  相似文献   

3.
《Ceramics International》2019,45(11):14249-14255
Novel single-component phosphors Ca3Sc2Si3O12:Cr3+/Ln3+ (CSS:Cr3+/Ln3+, Ln = Nd, Yb, Ce) with broadband near-infrared (NIR) emissions are synthesized. Their phase structure, photoluminescence properties and energy transfer between Cr3+ and Ln3+ ions are investigated. In the CSS host, Cr3+ ions occupy Sc3+ sites with low-field octahedral coordination, and thus show a broadband emission in 700–900 nm under the blue light excitation. Nd3+, Yb3+ and Ce3+ ions substitute Ca2+ sites in CSS, where Nd3+ and Yb3+ ions emit the NIR light in 900–1100 nm and their excitation efficiencies at ∼450 nm are greatly enhanced by utilizing the energy transfer from Cr3+ to Nd3+/Yb3+ ions. Ce3+ ions can further enhance the absorption of CSS:Cr3+/Ln3+ phosphors to the blue light, and at the same time contribute to the visible emission in 480–650 nm. Furthermore, CSS:Cr3+/Ln3+ phosphors show good thermal stability, and approximately 79% of the initial emission intensity is sustained at 150 °C. A phosphor-converted LED (pc-LED) prototype is fabricated by integrating the as-prepared phosphor CSS:Cr3+/Ln3+ and the commercial phosphor CaAlSiN3:Eu2+ with the blue LED chip, showing a super broadband emission ranging from 450 to 1100 nm. This finding shows the potential application of CSS:Cr3+/Ln3+ phosphors in broadband NIR pc-LEDs or super broadband LED sources with visible to NIR light output.  相似文献   

4.
《Ceramics International》2020,46(4):4511-4518
Rare earth activated lithium-containing alkaline earth silicates is an intensely studied topic in the fields of luminescent materials. In this study, a cerium-activated lithium-silicate blue phosphor, Li2Ca2Si2O7:Ce3+, was explored using structural computational simulations and systematic experiments. The Li2Ca2Si2O7:Ce3+ phosphor can be efficiently excited by near-ultraviolet and cathode ray light sources. According to the spectroscopic redshift theory, time-resolved photoluminescence (TRPL) and cathodoluminescence (CL) spectra, it is determined that the broad emission of Li2Ca2Si2O7:Ce3+ comes from two different luminescent centers. In addition, Li2Ca2Si2O7:Ce3+ exhibits strong blue emission at ~415 nm with high quantum yield and stable emission under high temperature and continuous electron beam bombardment. Therefore, this study provides a new insight into developing new high-efficiency and high-purity trichromatic phosphors.  相似文献   

5.
Developing a yellow phosphor with broadband emission covering more red-light areas is an effective approach to achieve high-quality solid-state lighting. In this study, a novel yellow-emitting nitride phosphor, Ca5Si2Al2N8:Ce3+, was successfully prepared at atmospheric pressure and lower temperatures (1300°C), and its structure-property relation was revealed using crystal refinement, photoluminescence (PL) spectra, time-resolved PL spectra, and density-functional theory calculations. The results demonstrate that Ca atoms occupy three different crystallographic sites in the lattice, which are substituted by Ce3+ to form multiple luminescence centers. Thus, Ca5Si2Al2N8:Ce3+ emits strong yellow light with a maximum peak at 585 nm and a wide emission band. Compared with YAG:Ce3+, Ca5Si2Al2N8:Ce3+ has a wider emission band with a FWHM of 150 nm, which can effectively cover the green and red areas. Moreover, the sample can be fully excited by a blue LED chip due to its broad excitation band. Notably, the Ca5Si2Al2N8's tight crystal structure composed of edge-sharing AlN4 and SiN4 tetrahedra pairs guarantee its thermochemical stability and quantum efficiency. Furthermore, Ca5Si2Al2N8:Ce3+ exhibits better thermal stability than YAG:Ce3+. The results indicate that Ca5Si2Al2N8:Ce3+ is a promising yellow phosphor for WLEDs.  相似文献   

6.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

7.
We first report the novel Ce3+-activated and Lu3+-stabilized gadolinium aluminate garnet (GAG) transparent ceramics derived from their precipitation precursors via a facile co-precipitation strategy using ammonium hydrogen carbonate (AHC) as the precipitant. The resulting precursors in liquid phase were substantially homogeneous solid solutions and could directly convert into sinterable garnet powders via pyrolysis. Substituting 35 at.% of Lu3+ for Gd3+ was effective to stabilize the cubic GAG garnet structure and transparent (Gd,Lu)3Al5O12:Ce ceramics were successfully fabricated by vacuum sintering at 1715°C. The ceramic transparency was improved by optimizing the particle processing conditions and the best sample had an in-line transmittance of ~70% at 580 nm (Ce3+ emission center) and over 80% in partial infrared region with a fine average grain size of ~4.5 μm. Transparent (Gd,Lu)3Al5O12:Ce ceramics have a short critical wavelength (<200 nm) and a maximal infrared cut-off at ~6.6 μm. Both the (Gd,Lu)3Al5O12:Ce phosphor powder and the transparent ceramic exhibited characteristic yellow emission of Ce3+ with strong broad emission bands from 490 to 750 nm upon UV excitation into two groups of broad bands around 340 and 470 nm. The photoluminescence and photoluminescence excitation intensities as well as the quantum yield were greatly enhanced via high-temperature densification. Both the phosphor powder and ceramic bulk had short effective fluorescence lifetimes.  相似文献   

8.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

9.
《Ceramics International》2020,46(8):11466-11473
White LEDs constructed by near-ultraviolet chips and red/green/blue/cyan-emitting phosphors are an important route for healthy lighting. However, efficient cyan-emitting phosphors are quite scarcity. The cyan-emitting phosphor Ba9Lu1.5Al0.5Si6O24:Ce3+ (BLASO:Ce3+) was reported for the first time. Under 400 nm excitation, BLASO:Ce3+ shows a emission peak at 488 nm with an FWHM of about 117 nm. At room temperature, the internal quantum efficiency (IQE) can reach as high as 90.8%. At 150 °C, the IQE decreases to 81.5%, indicating an excellent thermal stability. The effect of the Al substitution for Lu on crystal structures and photoluminescence were investigated. The homogeneity of the luminescence was diagnosed by viewing microscopic particles based on the scanning electron microscope (SEM) equipped a cathodoluminescence (CL) system.  相似文献   

10.
Ce3+, Nd3+ codoped (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6 phosphors were synthesized through the high‐temperature solid‐state reaction method. Luminescence spectra, absorption spectra, and decay lifetimes of these samples have been measured to prove the energy‐transfer process from Ce3+ to Nd3+. Under UV and blue light excitation, (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+,Nd3+ phosphors exhibit near‐infrared (NIR) emission, mainly peaking at 1093 nm and secondarily at 916 nm. The NIR emission matches well with the band gap of c‐Si. Results of this work suggest that the (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+, Nd3+ phosphors have potential application as down‐shifting luminescent convertor for enhancing the photoelectric conversion efficiency of c‐Si solar cell.  相似文献   

11.
A series of phosphors Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ have been prepared by a hightemperature solid‐state reaction using boric acid as flux. These oxyfluorides crystallize in cubic structure, space group. Under the near ultraviolet excitation within wavelength range 310–390 nm, Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors exhibit an intense emission covering a broad band of 370–500 nm derived from the 5d→4f transitions of Ce3+ and a characteristic emission at 544 nm of Tb3+. The emission can be tuned from blue to green by altering the relative ratio of Ce3+ to Tb3+ in the composition. The energy‐transfer mechanism from Ce3+ to Tb3+ is investigated based on the site occupancy of the luminescence center in the crystal structure of the Ca12Al14O32F2 host. More importantly, when a certain amount of boric acid is added as flux in the synthesis, the fluorescence intensity of the phosphors increases about 65%. Because of its broad excitation and efficiently tunable blue to green luminescence, the Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors may find promising application as a near UV‐convertible phosphor for white‐light‐emitting diodes.  相似文献   

12.
With great economic benefits, white LEDs (w-LEDs) have aroused worldwide attention. For phosphor-converted w-LED, highly efficient emission and good thermal stability of phosphor are significant parameters in practical application. Here, a yellow-orange garnet-structural phosphor, Ba2YAl3Si2O12:xCe3+ (x = 0-0.1) (BYAS:xCe3+) was developed by solid solution design. The broad emission spectrum of the as-synthesized phosphor could guarantee the effective increase of the color rendering index when it is combined with the InGaN blue chip. Benefiting from the garnet-type highly rigid framework, BYAS:xCe3+ exhibits an excellent thermal stability (50%@673K of the initial integrated intensity at 280 K) as well as high absolute quantum efficiency (80.4%@460 nm excitation light). Utilizing the approach of “phosphor-in-glass” (PiG), a high-power warm w-LED is achieved based on a blue LED plus PiG and the illuminance of this w-LED device can be as high as 4227 lx.  相似文献   

13.
As a promising replacement for nitride red phosphors, Ce: Y3(Mg1.8Al1.4Si1.8)O12 (Ce: YMASG) ceramic phosphors have attracted significant attention recently for their advantages in inorganic encapsulation and massive red-shifting of Ce3+ emission. In this work, Ce: YMASG with different doping concentrations of Ce3+ and Al2O3, was fabricated by vacuum sintering to investigate its effects on the elimination of the impurity phase and the enhancement of the luminescent properties of white light-emitting diodes (w-LEDs). It was discovered that the emission wavelength redshifts from 592 to 606 nm as the Ce3+ concentration increases, while at 450 K, the emission intensity deteriorates from 0.47 to 0.36 of its initial value. The Rietveld analysis revealed the presence of an impurity phase of Y4MgSi3O13 with a concentration of 17.021 wt% in Ce: YMASG. With the introduction of Al2O3, the impurity phase was eliminated from the matrix completely, the emission peak shifted to a shorter wavelength, and the thermal stability was greatly improved. When the correlated color temperature was controlled at around 3000 K in the packaged w-LEDs, the commission international de l'éclairage (CIE) chromaticity coordinates shifted toward the bottom left corner of the diagram with increasing concentration of Ce3+. Conversely, the luminous efficiency (LE) increased from 36 lm/W to 58.6 lm/W as the concentration of Al2O3 increased from 0 to 10 wt%, which demonstrated the application prospect of the fabricated phosphor in warm w-LEDs.  相似文献   

14.
This article reports a low‐cost yellow‐emitting Y3Al5‐xBxO12‐xNx:Ce3+ phosphor with an enhanced luminescent intensity and excellent thermal stability for white light‐emitting diodes (LEDs). It was synthesized by a simple gas‐pressure sintering (GPS) process. The effect of B3+–N3? incorporation on the optical properties of Y3Al5O12:Ce3+ phosphor was investigated. The addition of appropriate amounts of boron nitride (BN) leads to a marked increase in photoluminescent intensity and a slight shift of its emission spectra toward the blue region, which is assigned to the improved crystallinity and increased particle size. Especially, the prepared oxynitride phosphor does not exhibit any thermal quenching under high temperature, and the emission intensity at 250°C even increases up to 175% of that measured at 20°C. Finally, the white LED flat lamp with luminous efficiency as high as 101 lm/W, color rendering index of 72, and correlated color temperature of about 6600 K is successfully realized by using YAG:Ce3+ phosphor doped with 0.5 molar ratio BN, which is acceptable and promising for general indoor illuminations to replace fluorescent or incandescent lamps.  相似文献   

15.
《Ceramics International》2016,42(9):10854-10865
Ce3+, Dy3+ and Ce3+/Dy3+ co-doped Ca20Mg3Al26Si3O68 (CMAS) nanophosphors were synthesized via modified solution-combustion method. Sharp X-ray diffraction patterns confirmed the formation of pure crystalline phase of Ca20Al26Mg3Si3O68 as an orthorhombic crystal system having space group Pmmn. The phase purity of as synthesized material has allowed reliable structural parameters to be obtained from the Rietveld analysis of its powder diffraction pattern. The Ce3+, Dy3+ and Ce3+/Dy3+ emission at different lattice sites in CMAS host has been identified and discussed. Under ultra-violet (UV) excitation, optical properties and the energy transfer mechanism from Ce3+ to Dy3+ in CMAS: Ce3+/Dy3+ nanophosphors have been elaborated by photoluminescence spectroscopy. Also, the effects of doping and sintering temperature on the structure of prepared CMAS host samples have been investigated in detail. The Ce3+/Dy3+ concentration quenching mechanism due to multipole–multipole interaction has been studied and the critical energy-transfer distance was calculated to be 7.8 Å. The band gap of the synthesized phosphors was calculated from diffuse reflectance spectra using the Kubelka–Munk function. A uniform layered structure network has been revealed in scanning electron microscopy images of the CMAS phosphor. Transmission electron microscopy results indicate nanocrystalline nature of synthesized phosphors. CMAS: 1 m% Ce3+ and CMAS: 0.5 m% Dy3+ nano-luminescent powders are promising candidate as a blue and blue–yellow emitting UV convertible phosphor for application in white light emitting diodes. By utilizing the energy transfer mechanism in present CMAS: Ce3+/Dy3+ nanophosphors, with an appropriate tuning of the activator content, these phosphors can exhibit great potential for white light emission, as single-emitting component phosphors in solid state lighting technology.  相似文献   

16.
《Ceramics International》2020,46(5):5863-5870
By hetero-valence substituting Ba2+-Si4+ for Lu3+-Al3+ pair in Lu3Al5O12: Ce3+, a new green phosphor Ba1.5Lu1.5Al3.5Si1.5O12: Ce3+ (BLAS: Ce3+) has been obtained. It crystallizes in garnet structure with space group Ia-3d (230). In the structure, Ba2+ ions are incorporated into both dodecahedral Lu3+ and octahedral Al3+ sites while Si4+ ions only occupy tetrahedral Al3+ sites. Under the blue light irradiation of 450 nm, an intense green light peaking at 520 nm was observed and the PL spectrum can be fitted in two Gaussian components, due to the crystal field splitting of Ce3+ 5d states under D2 symmetry constrains. The optical doping concentration of BLAS: Ce3+ is 6% mol, of which the IQE and EQE are 89.1% and 51.8%, respectively. Furthermore, this sample exhibits an extremely good thermal stability, i.e. the integrated emission intensity is still more than 90% of the initial intensity at 480 K. Then, a w-LED device was fabricated from this new green phosphor BLAS: Ce3+ and commercial red phosphor (Ca,Sr)AlSiN3: Eu2+, which shows a quite high color rendering (Ra = 88.2) and a relatively low color temperature 4772 K. Besides, the phosphor exhibits a stable chromaticity under different acceleration voltages. The phosphor may be promising material for the development of solid-state lighting and display systems.  相似文献   

17.
《Ceramics International》2020,46(12):20004-20011
CaSc2O4:Ce3+ is a well-known green emitting phosphor, but needs to match with suitable red emitting phosphors in practical white lighting. Herein, a site engineering strategy is proposed to modify the local coordination environment of Ce3+ by introducing Y3+ and Mg2+ ions into the CaSc2O4 crystal lattice. The obtained results indicate in the modified Ce3+-doped samples (CSO-YMg), Y3+ ions can occupy both Sc3+ and Ca2+ sites simultaneously, and the Y3+ ions tend to occupy Ca2+ sites in low-doped stage and enter into the Sc3+ sites in the high-doped stage. The introduction of Y3+ ions gives rise to the existence of MgO in as-prepared CSO-YMg samples, and it can be effectively washed through pickling. In the spectral aspect, with the increase of Y3+ and Mg2+ ions, the main emission peak is red-shifted from 512 nm to 530 nm upon excitation at 450 nm. However, the high-doped sample presents much stronger thermally induced fluorescence quenching than CaSc2O4:Ce3+. The lattice defects caused by doped ions (Y3+ and Mg2+) and the non-radiative energy transfer process between the Ca2+ (Ce3+) and Sc3+ (Ce3+ or Ce4+) sites should be responsible for such evident quenching phenomenon in CSO-YMg, which is obviously different from the emitting feature of CaSc2O4:Ce3+ (only at Ca2+ sites). Besides, utilizing the as-prepared CSO-5 phosphors and a blue LED (~450 nm), a WLED was successfully fabricated, yielding a comparable performance to those with commercial Y3Al5O12:Ce3+ phosphors. What discussed in this study would bring some inspirations in the exploration and understanding of Ce3+-based phosphors according to local structural modification.  相似文献   

18.
A series of Ce3+‐ and Mn2+‐(co‐)activated SrAl2Si2O8 phosphors have been prepared at 1350°C under a reducing atmosphere and their photoluminescence properties have been studied as a function of the (co‐)dopant ions concentrations. We have discovered that energy transfer (ET) not only from Ce3+ to Mn2+ but also from “defects” to Mn2+ by the facts that there is existing significant overlap between the emission spectrum of Ce3+ (“defects”) and the excitation spectrum of Mn2+. The source of the “defects” in the host lattice is originated from the different charge substitution between Ce3+ and Sr2+. By adopting the principle of ET, the material SrAl2Si2O8: Ce, Mn can act as a phosphor for white‐light ultraviolet light‐emitting diodes (UV‐LEDs) by tuning of the dopants contents.  相似文献   

19.
Mixing multicolor phosphors for simulating the full spectrum of sunlight illumination is a popular solution to obtain high-quality white light. However, there is still a need to overcome the cyan gap in the emission spectrum. In this work, a series of garnet Ca2Y0.94–xLuxZr2–yHfyAl3O12:6%Ce3+ (abbreviated as CY0.94–xLuxZr2–yHfyA:Ce3+) cyan phosphors are designed and prepared by substituting Y3+ and Zr4+ in Ca2YZr2Al3O12:6%Ce3+ with Lu3+ and Hf4+ with smaller ionic radius and larger mass. Under 405 nm violet light excitation, the optimized Ca2Y0.88Lu0.06Hf2Al3O12:6%Ce3+ (CY0.88Lu0.06Hf2A:Ce3+) shows a bright cyan emission band in the range of 430–750 nm with the peak at 477 nm. Importantly, the emission intensity and thermal stability properties of CY0.88Lu0.06Hf2A:Ce3+ were significantly improved by 58% and 47% compared to those of pure Ca2YZr2Al3O12:Ce3+. Small and heavy cation substitution could induce highly stable rigid structure, thus enhancing emission intensity and stability. The color rendering index increases from 84.5 to 92.0 after supplementing CY0.88Lu0.06Hf2A:Ce3+ phosphor in white light-emitting diode devices combining commercial red, green, and blue phosphors with a violet chip, indicating its practical application in full-spectrum lighting. The present study provides promising strategies for the design and development of efficient cyan materials for high-quality full visible spectrum light-emitting diode lighting.  相似文献   

20.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号