首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New lead‐free perovskite solid solution ceramics of (1 ? x)(Bi1/2Na1/2)TiO3xBa(Ni1/2Nb1/2)O3[(1?x)BNT–xBNN,= 0.02–0.06) were prepared and their dielectric, ferroelectric, piezoelectric, and electromechanical properties were investigated as a function of the BNN content. The X‐ray diffraction results indicated that the addition of BNN has induced a morphotropic phase transformation from rhombohedral to pseudocubic symmetry approximately at = 0.045, accompanying an evolution of dielectric relaxor behavior as characterized by enhanced dielectric diffuseness and frequency dispersion. In the proximity of the ferroelectric rhombohedral and pseudocubic phase coexistence zone, the = 0.045 ceramics exhibited optimal piezoelectric and electromechanical coupling properties of d33~121 pC/N and kp~0.27 owing to decreased energy barriers for polarization switching. However, further addition of BNN could cause a decrease in freezing temperatures of polar nanoregions till the coexistence of nonergodic and ergodic relaxor phases occurred near room temperature, especially for the = 0.05 sample which has negligible negative strains and thus show the maximum electrostrain of 0.3% under an external electric field of 7 kV/mm, but almost vanished piezoelectric properties. This was attributed to the fact that the induced long‐range ferroelectric order could reversibly switch back to its original ergodic state upon removal of external electric fields.  相似文献   

2.
(1 ? x)(0.85Bi0.5Na0.5TiO3–0.11Ba0.5K0.5TiO3–0.04BaTiO3)‐ xK0.5Na0.5NbO3 lead‐free piezoelectric ceramics with = 0.00, 0.02, 0.03, 0.04, 0.05, and 0.10 were prepared by a conventional solid state method. A coexistence of rhombohedral (R) and tetragonal (T) phases was found in the system, which tended to evolve into pseudocubic symmetry when x increases. The = 0.04 sample exhibited improved electrical properties: the dielectric constant εr = 1900 with the low loss tangents 0.06, the Smax/Emax of ~400 and ~460 pm/V under unipolar and bipolar electric field, respectively. Meanwhile, piezoelectric constant d33 still maintained ~160 pC/N. These could be owed to the formation of polar nanoregions for relaxor phase.  相似文献   

3.
Er‐doped 0.94Bi0.5Na0.5TiO3‐0.06BaTiO3 (BNT‐6BT: xEr, x is the molar ratio of Er3+ doping) lead‐free piezoceramics with = 0–0.02 were prepared and their multifunctional properties have been comprehensively investigated. Our results show that Er‐doping has significant effects on morphology of grain, photoluminescence, dielectric, and ferroelectric properties of the ceramics. At room temperature, the green (550 nm) and red (670 nm) emissions are enhanced by Er‐doping, reaching the strongest emission intensity when = 0.0075. The complex and composition‐dependent effects of electric poling on photoluminescence also have been measured. As for electrical properties, on the one hand, Er‐doping tends to flatten the dielectric constant‐temperature (εrT) curves, leading to temperature‐insensitive dielectric constant in a wide temperature range (50°C–300°C). On the other hand, Er‐doping significantly decreases the ferroelectric‐relaxor transition temperature (TF–R) and depolarization temperature (Td), with the TF–R decreasing from 76°C to 42°C for x = 0–0.02. As a result, significant composition‐dependent electrical features were found in ferroelectric and piezoelectric properties at room temperature. In general, piezoelectric and ferroelectric properties tend to become weaker, as confirmed by the composition‐dependent piezoelectric coefficient (d33), planar coupling factor (kp), and the shape of polarization‐electric field (PE), current‐electric field (J–E), bipolar/unipolar strain‐electric field (S–E) curves. Furthermore, to understand the relationship between the TF–R/Td and the electrical properties, the composition of = 0.0075 has been intensively studied. Our results indicate that the BNT‐6BT: xEr with appropriate Er‐doping may be a promising multifunctional material with integrated photoluminescence and electrical properties for practical applications.  相似文献   

4.
The structures, Curie temperature, dielectric relaxor behaviors, ferroelectricity, ferromagnetism, and magnetocapacitance of the (1?x)Ba0.70Ca0.30TiO3xBiFeO3 [(1?x)BCT–xBF, x = 0–0.90] solid solutions have been systematically investigated. The ceramics have coexisted tetragonal (T) and orthorhombic (O) phases when x ≤ 0.06, coexisted pseudocubic (PC) and O phases when x = 0.065, coexisted cubic and O phases when 0.07 ≤  0.12, PC phase when 0.21 ≤  0.42, coexisted T and rhombohedral (R) phases when 0.52 ≤  0.70, and R phase when  0.75. Significantly, composition‐dependent microstructures and Curie temperature are observed, the average grain size increases from 1.9 μm for = 0, reaches 12.0 μm for = 0.67, and then decreases to 1.3 μm for = 0.90. At room temperature, the ceramics with = 0.42–0.70 show piezoelectric properties and multiferroic behaviors, characterized by the polarization‐electric field, polarization current intensity–electric field, and magnetization–magnetic field curves, the composition with = 0.67 has maximum polarization, remnant polarization, maximum magnetization, and remnant magnetization of 15.0 μC/cm2, 9.1 μC/cm2, 0.33 emu/g, and 0.14 emu/g, respectively. In addition, the magnetocapacitance is evidenced by the increased relative dielectric constant with increasing the applied magnetic field (H). With ΔH = 8 kOe, the composition with = 0.67 shows the largest values of (εr(H) ? εr(0))/εr(0) = 2.96% at room temperature. The structure–property relationship is discussed intensively.  相似文献   

5.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

6.
7.
In this work, we report a lead‐free piezoelectric ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3xBaZrO3, and the effects of BaZrO3 on the phase structure, microstructure, electrical properties and temperature stability are investigated. A morphotropic phase boundary‐like region consisting of rhombohedral (R) and tetragonal (T) phases is constructed in the compositions with = 0.035‐0.04. More importantly, in situ temperature independence of the piezoelectric effect {piezoelectric constant (d33) and strain} can be achieved below the Curie temperature (Tc). Intriguingly, the electric field‐induced strain is still observed at ≥ Tc due to the combined actions of the electrostrictive effect and the electric field‐induced phase transition. We believe that NaNbO3‐based ceramics of this type have potential for applications in actuators and sensors.  相似文献   

8.
Lead‐free piezoelectric (1 – – y)(Bi1/2Na1/2)TiO3xBaTiO3y(K0.5Na0.5)NbO3 (BNT–BT–KNN) ceramics were examined in situ under increasing temperature in the transmission electron microscope. Changing superstructure reflections indicate a transition from rhombohedral to tetragonal to cubic phase with broad coexistence regions. The additional evolution of the microstructure in combination with dielectric measurements leads to a model of two relaxor‐type phase evolutions with temperature.  相似文献   

9.
Ferroelectric phase coexistence was constructed in (1?x)BaTiO3xCaSnO3 lead‐free ceramics, and its relationship with the piezoelectricity of the materials was investigated to ascertain potential factors for strong piezoelectric response. It is found that the addition of CaSnO3 caused a series of phase transitions in the (1?x)BaTiO3xCaSnO3 ceramics, and a ferroelectric coexistence of rhombohedral, orthorhombic, and tetragonal phases is formed at = 0.08, where the ceramics exhibit the lowest energy barrier and consequently facilitate the polarization rotation and extension, resulting in the optimal piezoelectricity of d33 and kp values of 550 pC/N and 0.60, respectively. Our study provides an intuitive insight to understand the origin of high piezoelectricity in the ceramics with the coexistence of multiferroelectric phases.  相似文献   

10.
Perovskite solid solution ceramics of (1 ? x)BaTiO3xBi(Mg2/3Nb1/3)O3 (BT–BMN) (= 0.05–0.2) were synthesized by solid‐state reaction technique. The results show that the BMN addition could lower the sintering temperature of BT‐based ceramics. X‐ray diffraction results reveal a pure perovskite structure for all studied samples. Dielectric measurements exhibit a relaxor‐like characteristic for the BT–BMN ceramics, where broadened phase transition peaks change to a temperature‐stable permittivity plateau (from ?50°C to 300°C) with increasing the BMN content (= 0.2), and slim polarization–electric field hysteresis loops were observed in samples with ≥ 0.1. The dielectric breakdown strength and electrical resistivity of BT–BMN ceramics show their maxima of 287.7 kV/cm and 1.53 × 1013 Ω cm at = 0.15, and an energy density of about 1.13 J/cm3 is achieved in the sample of = 0.1.  相似文献   

11.
Perovskite solid solution ceramics of (1 ? x)BiFeO3xBaTiO3 (1 ? x)BF–xBT, 0.2 ≤ x ≤ 0.45) with high electrical resistivity were prepared by solid‐state reaction method. Actual ferroelectric hysteresis loops and temperature dependence of dielectric constant of the ceramics were obtained. Ceramics of 0.7BF–0.3BT with small rhombohedral distortion show highest remnant polarization (Pr = 26.0 μC/cm2) and piezoelectric coefficient (d33 = 134 pC/N). Compositions with pseudo‐cubic symmetry (intermediate phases) show relaxor‐like dielectric anomaly. The values of Pr and d33 decrease with increasing BT content, from 24.8 μC/cm2 and 104 pC/N for 0.65BF–0.35BT to 8.2 μC/cm2 and 5 pC/N for 0.55BF–0.45BT.  相似文献   

12.
Perovskite‐type xBi(Mg1/2Ti1/2)O3–(0.56 ? x)PbZrO3–0.44PbTiO3 (xBMT–PZ–PT) ternary solid solution ceramics were synthesized via a conventional solid‐state reaction method. The phase transition behaviors, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of the BMT content. The X‐ray diffraction analysis showed that the tetragonality of xBMT–PZ–PT was enhanced with increasing the BMT content, and a morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was identified approximately in the composition of = 0.08. In addition, the dielectric diffuseness and frequency dispersion behavior were induced with the addition of BMT and a normal‐relaxor‐diffuse ferroelectric transformation was observed from the PZ‐rich side to the BMT‐rich side. The electrical properties of xBMT–PZ–PT ceramics exhibit obviously compositional dependence. The = 0.08 composition not only possessed the optimum properties with εT33/ε0 = 1450, Qm = 69, d33 = 390 pC/N, kp = 0.46, Pr = 30 μC/cm2, Ec = 1.4 kV/mm, Tc = 325°C, and a strain of 0.174% (d33* = 436 pm/V) under an electric field of 4 kV/mm as a result of the coexistence of two ferroelectric phases near the MPB, but also owned a good thermal‐depolarization behavior with a d33 value of >315 pC/N up to 290°C and a frequency‐insensitive strain behavior.  相似文献   

13.
CuO‐added 0.96(Na0.5K0.5)(Nb1‐xSbx)O3‐0.04SrTiO3 ceramics sintered at the low temperature of 960°C for 10 hours showed dense microstructures and high relative densities. The specimens with 0.0 ≤  x ≤ 0.04 had orthorhombic‐tetragonal polymorphic phase boundary (PPB) structure. Tetragonal‐pseudocubic PPB structure was observed in specimens with 0.05 ≤  x ≤ 0.07, while the specimen with x = 0.08 has a pseudocubic structure. The structural variation in the specimens is explained by the decreases in the orthorhombic‐tetragonal transition temperature and Curie temperature with the addition of Sb5+ ions. The specimens with 0.05 ≤  x ≤ 0.07, which have tetragonal‐pseudocubic PPB structure, had large electric field‐induced strains of 0.14%‐0.016%. Moreover, these specimens also showed increased d33 values between 280 pC/N and 358 pC/N. In particular, the specimen with x = 0.055 showed particularly enhanced piezoelectric properties: d33 of 358 pC/N, kp of 0.45, and the electric field‐induced strain of 0.16% at 4.5 kV/mm.  相似文献   

14.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

15.
Phase formation, microstructures, dielectric, and ferroelectric properties of ZnO‐modified Pb(Mg1/3Nb2/3)0.65Ti0.35O3 (PMNT/xZnO, where = 0, 0.4, 2.0, 4.0, and 11.0 mol%) ceramics were studied. A coexistence of rhombohedral and tetragonal ferroelectric phases was observed at room temperature in all samples. The ceramics with the relative densities of 93%–95% were prepared. The modification by ZnO led to an increase in grain sizes of PMNT ceramics. The maximum dielectric constant of the pure PMNT ceramic was increased with = 0.4–4.0 mol% ZnO doping, with the highest value being observed in the 2.0 mol% sample. Both the temperature at which the transition between rhombohedral and tetragonal ferroelectric phases took place (TR‐T) and the Curie temperature of the ceramics tended to increase with increasing x. The ferroelectric properties were enhanced with increased remanent polarization and P(E) loop squareness in the compositions with = 0.4–4.0 mol%. However, the ferroelectric properties were attenuated with = 11.0 mol%.  相似文献   

16.
The series of 0.86BaTiO3–(0.14?x)BaZrO3xCaTiO3 (abbreviated as BT–BZ–xCT) ceramics with 0.03 ≤  0.11 were studied to obtain high piezoelectric properties. Rietveld refinement analysis indicated that the BT–BZ–CT compositions follow a gradual rhombohedral (R) → orthorhombic (O) + R → + tetragonal (T) → T phase transformation with increasing x. Clear evidence of the series of ferroelectric phase transitions was also found in the dielectric results. The RO and OT transition temperature shifted close to ambient temperature, while the Curie temperature slightly increased with increasing x. In addition to the dielectric loss peaks associated with the structural phase transitions, a broad low‐temperature dielectric loss peak was detected in the R phase at = 90‐150 K. This dielectric relaxation was attributed to the domain wall freezing and fits well to the Vogel‐Fulcher model with activation energy Ea ≈ 60‐300 meV and freezing temperature TVF ≈ 75‐140 K. High piezoelectric strain coefficient (d33*) of about 1030 pm/V at 10 kV was achieved at = 0.07, and a high Curie temperature (TC) was maintained at about 375 K.  相似文献   

17.
Lead free piezoelectric ceramics of Y3+‐doped Ba1?xCaxZr0.07Ti0.93O3 with = 0.05, 0.10, and 0.15 were prepared. Composition and temperature‐dependent structural phase evolution and electrical properties of as‐prepared ceramics were studied systematically by X‐ray diffraction, Raman spectroscopy, impedance analyzer, ferroelectric test system, and unipolar strain measurement. Composition with = 0.10 performs a good piezoelectric constant d33 of 363 pC/N, coercive field Ec of 257 V/mm, remanent polarization Pr of 14.5 μC/cm2, and a Curie temperature Tm of 109°C. High‐resolution X‐ray diffraction was introduced to indicate presence of orthorhombic phase. Converse piezoelectric constant d33* of = 0.10 composition performed better temperature stability in the range from 50°C to 110°C. That means decreasing orthorhombic–tetragonal phase transition temperature could be an effective way to enlarge its operating temperature range.  相似文献   

18.
Lead‐free piezoelectric ceramics, 0.96[{Bi0.5 (Na0.84K0.16)0.5}1?xLix(Ti1?yNby)O3]–0.04SrTiO3 (BNKLiTN–ST) with x,= 0–0.030, were synthesized by solid‐state reaction method. X‐ray diffraction patterns indicated that Li and Nb successfully diffused into the BNKT–ST lattice and formed a pure perovskite structure with x, y  0.025. Increasing the Li and Nb contents (x, y = 0.020) induced a phase transformation from the coexistent rhombohedral–tetragonal phases for pure BNKT–ST ceramics to a pseudocubic phase, resulting in degradation of the remnant polarization and coercive field. However, the field‐induced strain was markedly enhanced at x,= 0.020, giving rise to a giant dynamic piezoelectric constant (d33* = Smax/Emax = 800 pm/V). Furthermore, the temperature dependence of the field‐induced strain response showed temperature‐insensitivity up to 120°C. To explore its potential for device applications, a 10‐layered stack‐type multilayer actuator was fabricated from the optimal composition (x, y = 0.020). This actuator showed a large Smax/Emax of 600 pm/V at a relatively low driving field of 4.5 kV/mm suggesting highly promising results in lead‐free BNT‐based ceramics.  相似文献   

19.
To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤  1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (= 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.  相似文献   

20.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号