首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene was grown by low-pressure chemical vapour deposition on polished steel samples using ethanol as a precursor at different pressures: 200 and 400 mTorr. The samples were characterized by Raman spectroscopy, and the Raman maps clearly show the formation of an inhomogeneous graphene coating with surface regions covered with single-layer, bilayer, and multilayer graphene, the last one covering most of the surface area of the sample when the sample was prepared at 400 mTorr. Scanning electron microscopy revealed the partial coverage of the sample surface when the graphene coating was prepared at a pressure of 200 mTorr. Friction measurements were taken using a micro-tribometer in a ball-on-flat contact geometry with a stainless steel ball as the counterbody. An important reduction in the coefficient of friction was verified even with partial coverage of the steel surface, and it was attributed to the formation of nanographitic structures in the wear track region and partially transferred to the counterbody.  相似文献   

2.
Graphene nanocrystallites embedded in amorphous carbon matrix can bring excellent tribological, electrical and magnetical properties to the carbon films. But too large size of graphene nanocrystallite would lead to degradation of the tribological performance. So it is necessary to clarify the dependence of frictional behavior of the carbon film on graphene nanocrystallite size. In order to control the size, different electron irradiation densities were introduced during film growth in the electron cyclotron resonance plasma sputtering process. Frictional tests on the films were carried out with a Pin-on-Disk tribometer. The evolution of graphene nanocrystallite size along with electron irradiation density was examined by transmission electron microscopy and Raman spectroscopy. The results showed that the graphene nanocrystallite size increased with increasing of the electron irradiation density. The film with a graphene nanocrystallite size of 1.09 nm exhibited a low friction coefficient of 0.03 and a long wear life. When nanocrystallite size increased, the friction coefficient increased and the wear life decreased. Observation on transfer film revealed that the nanocrystallite in transfer film grew larger when initial size was 1.09 nm, and changed smaller when initial size was 1.67 nm. The results suggested that embedded graphene nanocrystallite played an important role in the formation of transfer film, the initial size of graphene nanocrystallite strongly affected the frictional behavior of the film, and the graphene nanocrystallite needed to be controlled under a certain size in order to keep the good tribological performance.  相似文献   

3.
This article investigates the tribological behavior of nanoparticles (NPs) of titanium dioxide anatase TiO2 (A), graphene, and TiO2 (A) + graphene added to the pure base oil group ΙΙ (PBO-GΙΙ). The morphology of these two nanostructures of TiO2 (A) and graphene was characterized by transmission electron microscopy (TEM). Oleic acid (OA) was blended as a surfactant into the formulation to help stabilize the NPs in the lubricant oil. A four-ball test rig was used to determine the tribological performance of six different samples, and an image acquisition system was used to examine and measure the wear scar diameter of the stationary balls. Field emission–scanning electron microscopy (FE-SEM) was used to examine the wear morphology. Energy-dispersive X-ray spectroscopy (EDX), element mapping, and Raman spectroscopy were employed to confirm the presence of (TiO2 (A) + graphene) and the formation of a tribolayer/film on the mating surfaces. Moreover, a 3D optical surface texture analyzer was utilized to investigate the scar topography and tribological performance. The experiments proved that adding (0.4?wt% TiO2 (A) + 0.2?wt% graphene) to the PBO-GΙΙ optimized its tribological behavior. These excellent results can be attributed to the dual additive effect and the formation of a tribofilm of NPs during sliding motion. Furthermore, the average reductions in the coefficient of friction (COF), wear scar diameter (WSD), and specific wear rate (SWR) were 38.83, 36.78, and 15.78%, respectively, for (0.4?wt% TiO2 (A) + 0.2?wt% graphene) nanolubricant compared to plain PBO-GΙΙ lubricant.  相似文献   

4.
Lee Z  Meyer JC  Rose H  Kaiser U 《Ultramicroscopy》2012,112(1):39-46
The dependence of high-resolution transmission electron microscopy (HRTEM) image contrast of graphene on the adjustable parameters of an aberration-corrected microscope operated at 80 and 20 kV has been calculated and, for 80 kV, compared with measurements. We used density functional theory to determine the projected atom potential and obtained the image intensity by averaging over the energy distribution of the imaging electrons, as derived from the electron energy loss spectroscopy measurements. Optimum image contrast has been determined as a function of energy spread of the imaging electrons and chromatic aberration coefficient, showing that significant improvement of contrast can be achieved at 80 kV with the help of a monochromator, however at 20 kV only with chromatic aberration correction and bright atom contrast conditions.  相似文献   

5.
Tribological thermostability of carbon film with vertically aligned graphene sheets was studied with annealing temperatures up to 1,750 °C. The carbon film was deposited on silicon carbide substrate by electron cyclotron resonance plasma sputtering. Tribological thermostabilities of the carbon film in terms of friction coefficient, wear life, and nanoscratch depth were investigated by Pin-on-Disk tribometer and atomic force microscopy. The evolution of nanostructure of vertically aligned graphene sheets in the carbon film as a function of annealing temperature was examined by Raman spectroscopy and transmission electron microscopy. The results showed that the friction coefficient, wear life, and nanoscratch depth of the carbon film were thermally stable up to 1,250 °C. When the annealing temperature was 1,500 °C, the friction coefficient and the nanoscratch depth increased, the wear life decreased, but still all were of considerable values. These variations were attributed to the initiation of tubular-like structure originated from graphene sheets stacks. After annealing at 1,750 °C, tribological performances degraded catastrophically due to the abundant formation of tubular-like structures and the appearance of a graphitic interlayer between the film and the substrate.  相似文献   

6.
The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X‐ray detector) is gaining popularity since it allows 3‐D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro‐sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM?Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X‐ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in‐FESEM?Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP‐FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low‐vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface‐enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM‐Structural Chemical Analyser system in order to increase applications.  相似文献   

7.
We demonstrate a simple capacitance-based method to quickly and efficiently locate micron-sized conductive samples, such as graphene flakes, on insulating substrates in a scanning tunneling microscope (STM). By using edge recognition, the method is designed to locate and to identify small features when the STM tip is far above the surface, allowing for crash-free search and navigation. The method can be implemented in any STM environment, even at low temperatures and in strong magnetic field, with minimal or no hardware modifications.  相似文献   

8.
Many new materials emerging are strictly two dimensional (2D), often only one or two monolayers thick. They include transition metal dichalcogenides, such as MoS2, and graphene. Graphene in particular appears to have many potential applications. Typically the crystalline film without contamination is of interest. Therefore, a reliable method is needed to routinely evaluate the quality of the synthesized samples. Here, we present one such candidate method that utilizes standard electron diffraction and low/medium magnification imaging in a rudimentary transmission electron microscope. The electron irradiation dose is very low thus reducing electron irradiation damage of the investigated samples. As an example, the method was applied to the evaluation of as‐grown graphene sample quality and a study on heating‐induced change in graphene. It can be used to evaluate the volume and areal ratio of crystalline to noncrystalline component. The method is amiable to automated film quality evaluation.  相似文献   

9.
谢明学  张玲 《光学仪器》2017,39(5):46-49
金属胶体是一种新兴的表面增强拉曼散射(SERS)活性衬底,利用激光液相刻蚀技术制备了金银合金胶体,并通过透射电镜、吸收光谱、表面增强拉曼散射光谱等手段对其特性进行表征。结果表明,合金粒子多数为球形颗粒,颗粒大小在5nm左右,并且有很好的分散性,等离子体共振吸收峰位于428nm。此外,该胶体表现出很好的表面增强拉曼散射活性,且性能稳定可在室温下长时间保存。  相似文献   

10.
Sun WX  Shen ZX 《Ultramicroscopy》2003,94(3-4):237-244
The combination of near-field scanning optical microscopy and Raman spectroscopy provides chemical/structural specific information with nanometer spatial resolution, which are critically important for a wide range of applications, including the study of Si devices, nanodevices, quantum dots, single molecules of biological samples. In this paper, we describe our near-field Raman study using apertureless probes. Our system has two important features, critical to practical applications. (1) The near-field Raman enhancement was achieved by Ag coating of the metal probes, without any preparation of the sample, and (2) while all other apertureless near-field Raman systems were constructed in transmission mode, our system works in the reflection mode, making near-field Raman study a reality for any samples. We have obtained the first 1D Raman mapping of a real Si device with 1s exposure time. This is a very significant development in near-field scanning Raman microscopy as it is the first demonstration that this technique can be used for imaging purpose because of the short integration time. In addition, the metal tips used in our set-up can be utilized to make simultaneous AFM and electrical mappings such as resistance and capacitance that are critical parameters for device applications.  相似文献   

11.
Polydopamine (PDA)/graphene oxide (GO) multilayer was successfully constructed on the surface of silicon substrate by a layer-by-layer self assembling process. In order to further obtain hydrophobic outer surface, low energy molecules of 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDTS) were grafted thereon and the sample was coded as PDA/GO-PFDTS. The microstructures, chemical compositions, and morphologies of PDA/GO-PFDTS were characterized by the water contact angle (WCA) measurements, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). In particular, the tribological performances were investigated by AFM and ball-on-plate tribometer. Experimental results showed that PDA/GO-PFDTS could lower the stiction and friction greatly as compared with the bare substrate and control samples. It was indicated that the as-fabricated film of PDA/GO-PFDTS was a very promising candidate for solving the tribological problems in micro/nano devices.  相似文献   

12.
Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM.  相似文献   

13.
周全  汪岳峰  魏大鹏 《光学仪器》2014,36(5):438-442,448
石墨烯因具备宽波段高透光性和良好的导电性而有望成为光学窗口的电磁屏蔽材料。采用AuCl3掺杂方式增加少层石墨烯薄膜的载流子浓度,降低表面电阻值。并通过拉曼光谱对掺杂前后石墨烯薄膜进行表征、对比,得到石墨烯薄膜层数、缺陷、掺杂类型及连续性方面的信息。利用各向异性介质的平面波传输线模型,着重考虑化学势对石墨烯电导率的影响,得到宽波段掺杂石墨烯的屏蔽效能曲线。实验采用屏蔽室法对转移在PET表面的石墨烯薄膜进行屏蔽效能测试,结果表明寡层(1~2层)掺杂石墨烯的平均屏蔽效能在6.7dB左右,与计算值符合较好。  相似文献   

14.
I. Müllerov  L. Frank 《Scanning》1993,15(4):193-201
Minimum necessary adaptations are described that are sufficient for obtaining very low energy electron micrographs (VLEEMs) from commercially available routine scanning electron micrographs (SEMs) with the electrons accelerated to an energy of the order of tens of keV. A cathode lens inserted into the specimen chamber enables one to decelerate electrons in front of the specimen surface to a desired low landing energy, which can be freely varied even down to zero. When a potential slightly more negative than the accelerating voltage is applied, a scanning mirror electron microscopy mode can be effected. The achievable point resolution at very low energies proves to be not too dependent on the objective lens parameters, so that the physical limit of aberrations of the homogeneous field of the cathode lens is nearly attainable. The detection efficiency for the standard Everhart-Thornley secondary electron detector is discussed, and results for the routine Tesla BS 340 SEM are presented.  相似文献   

15.
Lin  Jinshan  Wang  Liwei  Chen  Guohua 《Tribology Letters》2011,41(1):209-215
Graphene platelets were chemically modified in a reflux reaction with stearic and oleic acids. Examination of the surface features of the graphene platelets before and after modification by infrared spectroscopy and ultraviolet–visible spectrophotometer revealed that the modification led to an improvement in the dispersion of graphene platelets in base oil. The tribological behavior of the lubricating oil containing modified graphene platelets (MGP) was further investigated using a four-ball machine. The results indicated that the oil containing only 0.075 wt% of MGP clearly improved the wear resistance and load-carrying capacity of the machine. Scanning electron microscopy and energy dispersive spectrometer performed to analyze the wear scar surfaces after friction confirmed that the outstanding lubrication performance of MGP could be attributed to their small size and extremely thin laminated structure, which allow the MGP to easily enter the contact area, thereby preventing the rough surfaces from coming into direct contact.  相似文献   

16.
As is well known, electron energy loss spectroscopy can be used to determine the relative sample thickness in the electron microscope. This paper considers how such measurements can be applied to biological samples in order to obtain the mass thickness for quantitative X-ray microanalysis. The important quantity in estimating the mass thickness from an unknown sample is the total inelastic cross section per unit mass. Models for the cross section suggest that this quantity is constant to within ±20% for most biological compounds. This is comparable with the approximation made in the continuum method for measuring mass thickness. The linearity of the energy loss technique is established by some measurements on evaporated films and quantitation is demonstrated by measurements on thin calcium standards. A significant advantage of the method is that the energy loss spectrum can be recorded at very low dose, so that mass thickness determination can be made before even the most sensitive samples suffer damage resulting in mass loss. The energy loss measurements avoid the necessity to correct the continuum measurement for stray radiation produced in the vicinity of the sample holder. Unlike the continuum method the energy loss technique requires uniform mass thickness across the probe area, but this is not usually a problem when small probes (<100 nm diameter) are used.  相似文献   

17.
This paper reports a procedure to combine the focused ion beam micro‐sampling method with conventional Ar‐milling to prepare high‐quality site‐specific transmission electron microscopy cross‐section samples. The advantage is to enable chemical and structural evaluations of oxygen dissolved in a molten iron sample to be made after quenching and recovery from high‐pressure experiments in a laser‐heated diamond anvil cell. The evaluations were performed by using electron energy‐loss spectroscopy and high‐resolution transmission electron microscopy. The high signal to noise ratios of electron energy‐loss spectroscopy core‐loss spectra from the transmission electron microscopy thin foil, re‐thinned down to 40 nm in thickness by conventional Argon ion milling, provided us with oxygen quantitative analyses of the quenched molten iron phase. In addition, we could obtain lattice‐fringe images using high‐resolution transmission electron microscopy. The electron energy‐loss spectroscopy analysis of oxygen in Fe0.94O has been carried out with a relative accuracy of 2%, using an analytical procedure proposed for foils thinner than 80 nm. Oxygen K‐edge energy‐loss near‐edge structure also allows us to identify the specific phase that results from quenching and its electronic structure by the technique of fingerprinting of the spectrum with reference spectra in the Fe‐O system.  相似文献   

18.
This work demonstrate how two different carbide coatings respond very differently to tribological stress and their very different ability to provide low friction tribofilms in dry sliding against steel. Both coatings, TiC and TiAlC, were deposited by DC-magnetron sputtering, but while the TiC is a thermodynamically stable coating, the TiAlC is made metastable with the addition of Al, and therefore releases carbon upon tribological testing. Thus, the TiAlC coating is shown to be self-lubricating on the atomic scale which makes very low friction achievable. The primary interest in this study is the differences in the tribofilms formed on the steel balls that have been sliding against the two coatings. Cross-section samples for transmission electron microscopy were extracted from the ball tribofilms using a focused ion beam instrument. X-ray photoelectron spectroscopy and Raman analysis were employed to provide information on the chemical and structural characteristics of the tribofilms. It was shown that tribofilms on steel balls largely inherit the structure and composition that evolve in the coating wear tracks, that the tribofilm microstructure greatly affects the friction level. It was also shown that tribofilm delamination, occurring with tribofilm growth, was initiated in weak ribbon like regions inside the tribofilm.  相似文献   

19.
The evolution of hydrogen from many hydrated cryo‐preserved soft materials under electron irradiation in the transmission electron microscope can be observed at doses of the order of 1000 e nm?2 and above. Such hydrogen causes artefacts in conventional transmission electron microscope or scanning transmission electron microscopy (STEM) imaging as well as in analyses by electron energy‐loss spectroscopy. Here we show that the evolution of hydrogen depends on specimen thickness. Using wedge‐shaped specimens of frozen‐hydrated Nafion, a perfluorinated ionomer, saturated with the organic solvent DMMP together with both thin and thick sections of frozen‐hydrated porcine skin, we show that there is a thickness below which hydrogen evolution is not detected either by bubble observation in transmission electron microscope image mode or by spectroscopic analysis in STEM electron energy‐loss spectroscopy mode. We suggest that this effect is due to the diffusion of hydrogen, whose diffusivity remains significant even at liquid nitrogen temperature over the length scales and time scales relevant to transmission electron microscopy analysis of thin specimens. In short, we speculate that sufficient hydrogen can diffuse to the specimen surface in thin sections so that concentrations are too low for bubbling or for spectroscopic detection. Significantly, this finding indicates that higher electron doses can be used during the imaging of radiation‐sensitive hydrated soft materials and, consequently, higher spatial resolution can be achieved, if sufficiently thin specimens are used in order to avoid the evolution of hydrogen‐based artefacts.  相似文献   

20.
The ectopic calcifications of non-mineralized tissues can occur in several forms throughout life, such as pulpal calcification. The presence of pulp stones is a challenge in endodontic treatment because they partially or fully obliterate the pulp chamber hindering access to root canals and their subsequent shaping. This study aimed to determine their crystallographic properties and evaluate the capacity of citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to promote the demineralization of pulp calcifications. The samples were obtained from patients with indications of endodontic treatment, and the radiographic examination was suggestive of pulp stone in at least one permanent tooth. The samples were isolated and analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). The Fourier Transform by high resolution-transmission electron microscopy, Raman microscopy, and X-ray diffraction (XRD) were used to identify the mineral phase and crystallographic characteristics. To evaluate the effect of CA and EDTA on the crystallinity of calcifications, they were submerged into these two individual solutions and the changes were assessed in situ by Raman spectroscopy. The SEM images obtained from calcifications demonstrated irregular morphologies. EDX of sample surfaces shows a high presence of oxygen, carbon, calcium, and phosphorous, however, other elements such as sodium, magnesium, nitrogen, chlorine, potassium, sulfur, and zinc were identified in less quantity. According to Raman, XRD, and high-resolution transmission electron microscopy, the predominant mineral phase identified in the pulpal calcification was a poor crystallinity apatite. According to in situ analyses, the effect of CA and EDTA was observed on the signals of PO43− and CH2 groups corresponding to inorganic and organic components. The changes with CA were evident at 7 min while the effect of EDTA was observed until 15 min of treatment. All results indicate that pulp stones have a heterogeneous composition principally composed of apatite with low crystallinity. The solubility of these pathological minerals is adequate using solutions such as EDTA or CA; however, the effectivity depends on the mineralization grade of calcifications, time, and concentration of exposition to this chemical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号