首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of newly developed color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors were successfully prepared in this study. The crystal structures of the prepared phosphors were revealed to be hexagonal with space group P63/m, and the lattice parameters were evaluated via utilizing the Rietveld refinement method. Upon excitation at 288 nm, the emission spectra of Ce3+and Tb3+ ions co‐doped Ca3La6(SiO4)6 phosphors included a blue emission band and several emission lines. The blue emission band with a peak at 420 nm originated in the fd transitions of Ce3+ ions, and the emission lines in the range of 450–650 nm were assigned to the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. Increasing the doping content of Tb3+ ions considerably strengthened Tb3+ emission and reduced Ce3+ emission owing to the energy transfer from Ce3+ to Tb3+ ions. The mechanism of the energy transfer was confirmed to be a dipole–dipole interaction. The effective energy transfer from Ce3+ to Tb3+ ions caused a color shift from purplish‐blue to yellowish‐green. Color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors have the potential to be utilized in light‐emitting diodes with proper modulation of the amount of Tb3+ ions.  相似文献   

2.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

3.
With solid‐state reaction method, series of Y4Si2O7N2:Tb3+ phosphors were prepared under the high‐temperature and high‐pressure conditions. The photoluminescence properties at room and high temperature were investigated. Two groups of emission lines have been observed, which are corresponding to Tb3+ 5D37FJ (J = 6, 5, 4, 3, 2) and 5D47FJ (J = 6, 5, 4, 3) transitions. The physical mechanisms for excitation, emission, concentration quenching, and thermal quenching were investigated. The cross‐relaxation mechanism between the 5D3 and 5D4 emission was investigated and discussed. The Tb–Tb critical distance for cross‐relaxation was calculated to be ~13 Å. The optimum Tb3+ concentration in this phosphor is 15 mol%. The quadrupole–quadrupole interaction dominates the non‐radiative energy transfer between the Tb3+ luminescence centers and causes the concentration quenching. This phosphor shows high thermal stabilities that at 150°C the intensity remains 92% compared with that measured at room temperature. The present work suggests that this Tb3+‐doped Y4Si2O7N2 material is a kind of potential green‐emitting phosphor.  相似文献   

4.
A series of phosphors Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ have been prepared by a hightemperature solid‐state reaction using boric acid as flux. These oxyfluorides crystallize in cubic structure, space group. Under the near ultraviolet excitation within wavelength range 310–390 nm, Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors exhibit an intense emission covering a broad band of 370–500 nm derived from the 5d→4f transitions of Ce3+ and a characteristic emission at 544 nm of Tb3+. The emission can be tuned from blue to green by altering the relative ratio of Ce3+ to Tb3+ in the composition. The energy‐transfer mechanism from Ce3+ to Tb3+ is investigated based on the site occupancy of the luminescence center in the crystal structure of the Ca12Al14O32F2 host. More importantly, when a certain amount of boric acid is added as flux in the synthesis, the fluorescence intensity of the phosphors increases about 65%. Because of its broad excitation and efficiently tunable blue to green luminescence, the Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors may find promising application as a near UV‐convertible phosphor for white‐light‐emitting diodes.  相似文献   

5.
A series of Ba2B2O5: RE (RE=Ce3+/Tb3+/Sm3+) phosphors were synthesized using high‐temperature solid‐state reaction. The X‐ray diffraction (XRD), luminescent properties, and decay lifetimes are utilized to characterize the properties of the phosphors. The obtained phosphors can emit blue, green, and orange‐red light when single‐doped Ce3+, Tb3+, and Sm3+. The energy can transfer from Ce3+ to Tb3+ and Tb3+ to Sm3+ in Ba2B2O5, but not from Ce3+ to Sm3+ in Ce3+ and Sm3+ codoped in Ba2B2O5. However, the energy can transfer from Ce3+ to Sm3+ through the bridge role of Tb3+. We obtain white emission based on energy transfer of Ce3+→Tb3+→Sm3+ ions. These results reveal that Ce3+/Tb3+/Sm3+ can interact with each other in Ba2B2O5, and Ba2B2O5 may be a potential candidate host for white‐light‐emitting phosphors.  相似文献   

6.
A modified chemical vapor deposition (CVD) technique is used to synthesize the color‐tunable siliconitride Sr2‐1.5x‐yCexEuySi5N8 (x = 0.000‐0.016 and y = 0.000‐0.020) phosphors. In comparison with the conventional solid‐state method, the CVD approach successfully improved the crystallinity, particle size distribution, and photoluminescence through the enhanced gas‐solid reaction. Under blue excitation, Sr1.98Eu0.02Si5N8 exhibited a red emission band at 618 nm. The incorporation of Ce3+ ions increased the emission intensity of Eu2+ ions by approximately 10% owing to the enhanced absorption and dipole‐dipole energy transfer process from Ce3+ to Eu2+ ions. It resulted in a shift of the emission colors from yellow to red region. The external and internal quantum efficiencies of Sr1.906Ce0.06Eu0.004Si5N8 were calculated as 54% and 70%, respectively. The activation energy of thermal stability for Sr1.906Ce0.06Eu0.004Si5N8 was evaluated as 0.31 eV. A white LED with a color rendering index of 80 and a CCT of 4964 K was successfully fabricated with the present phosphors. The current research demonstrated a new series of Sr2Si5N8:Ce3+, Eu2+ phosphors with color‐tunability for fabricating white LEDs with high color‐rendering index.  相似文献   

7.
Ce3+‐activated light emitting diode (LED) phosphors have been extensively examined for photoluminescence, and have been the focus of many detailed structural studies. However, reports of the decay curves of Ce3+‐activated LED phosphors are rare. Although we have reported the decay behaviors of several Eu2+‐activated LED phosphors such as Sr2SiO4, Sr2Si5N8, and CaAlSiN3, we have never conducted an in‐depth study into the decay behavior for Ce3+‐activated LED phosphors. For this study, we investigated the decay curves of well‐known Ce3+‐activated LED phosphors such as La3Si6N11 and Lu3Al5O12. Similar to Eu2+‐activated LED phosphors, the decay behavior of Ce3+‐activated LED phosphors was sensitive to the Ce3+ concentration and to the detection wavelength. There was active nonradiative energy transfer between the Ce3+ activators located at different sites.  相似文献   

8.
Ce3+/Tb3+ co-doped NaMgBO3 phosphors were successfully synthesized by solid-state method. Under 381 nm excitation, the cyan emission owing to the 5d → 4f of Ce3+ ions and green emissions arising from the 5D4 → 7FJ (J = 6, 5, 4, and 3) transitions of Tb3+ ions were seen in all the phosphors. Through theoretical analysis, one knows that the energy transfer from Ce3+ to Tb3+ ions with high efficiency of 83.74% was contributed by dipole–dipole transition. Furthermore, the internal quantum efficiency of NaMgBO3:0.01Ce3+,0.03Tb3+ phosphor was 54.28%. Compared with that of at 303 K, the emission intensity of the developed products at 423 K still kept 73%, revealing the splendid thermal stability of the studied phosphors. Through utilizing the resultant phosphors as cyan-green components, the fabricated white-LED device exhibited an excellent correlated color temperature of 2785 K, high color-rendering index of 85.73, suitable luminance efficiency of 25.00 lm/W, and appropriate color coordinate of (0.4279, 0.3617). Aside from the superior photoluminescence, the synthesized phosphors also exhibited excellent cathode-luminescence properties which were sensitive to the current and accelerating voltage. Furthermore, the NaMgBO3:0.01Ce3+,0.03Tb3+ phosphors with multi-mode emissions were promising candidates for optical anti-counterfeiting. All the results indicated that the Ce3+/Tb3+ co-doped NaMgBO3 phosphors were potential multi-platforms toward white-LED, field emission displays, and optical anti-counterfeiting applications.  相似文献   

9.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

10.
Novel blue‐green emitting Ce3+‐ and Tb3+‐activated K2CaP2O7 (KCPO) luminescent materials were synthesized via a solid‐state reaction method. X‐ray diffraction, luminescence spectroscopy, decay time, and fluorescent thermal stability tests have been used to characterize the prepared samples. The KCPO:Ce3+,Tb3+ luminescence spectra show broad band of Ce3+ ions and characteristic line of Tb3+ ion transition (5D47F5). The color variation in the light emitting from blue to green under UV excitation can be obtained by tailoring the Tb3+ content in KCPO:Ce3+. Besides, Ce3+ ions obviously intensify Tb3+ ion emission through an effective energy transfer process, which was confirmed from decay curves. The energy transfer efficiency was determined to be 82.51%. A resonant type mechanism via the dipole–quadrupole interaction can be proposed for energy transfer. As a whole, the KCPO:Ce3+,Tb3+ phosphor exhibits excellent performance in the range from 77 to 673 K, indicating the phosphors are highly potential candidates for solid‐state lighting.  相似文献   

11.
Color‐tunable phosphors NaCaBO3: Ce3+, Mn2+ were synthesized by sol–gel (SG) and solid state (SS) method. SEM observation indicated that the microstructure of phosphor (SG) consisted of regular fine grains with an average size of about 5 μm. NaCaBO3: Ce3+, Mn2+ showed two emission bands: one at 425 nm for Ce3+ and another at 610 nm for Mn2+. NaCaBO3: Ce3+, Mn2+ (SG) exhibit higher energy‐transfer efficiency (90%) and higher Mn2+ quantum efficiency (80%) than SS samples, due to smooth surface, narrow size distribution, and improved homogeneity of sensitizer/activator ions. NaCaBO3: Ce3+, Mn2+ exhibits blue‐to‐red tunable color by changing Ce3+/Mn2+ ratio.  相似文献   

12.
A series of Ce3+, Tb3+, Eu3+ tri‐doped Ba2Y(BO3)2Cl red‐emitting phosphor have been synthesized by solid‐state method. The Ce3+→Tb3+→Eu3+ energy‐transfer scheme has been proposed to realize the sensitization of Eu3+ ion emission by Ce3+ ions. Following this energy‐transfer model, near‐UV convertible Eu3+‐activated red phosphors have been obtained in Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ phosphors. Energy transfers from Ce3+ to Tb3+, and Tb3+ to Eu3+, as well as corresponding energy‐transfer efficiencies are investigated. The combination of narrow‐line red emission and near‐UV broadband excitation makes Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ as a novel and efficient red phosphor for NUV LED applications.  相似文献   

13.
Superior optical, thermal, and mechanical properties of transparent ceramics are very important in the applications of solid lasers, solid‐state lighting, and transparent armors. Herein, a series of (Dy0.03CexY0.97?x)3Al5O12 transparent ceramics were fabricated using vacuum reactive sintering method. Importantly, these Dy3+/Ce3+ codoped yttrium aluminum garnet (YAG) transparent ceramics served as single‐composition tunable white‐light phosphors for UV‐LEDs is developed for the first time. By combining with commercially available UV‐LEDs directly, the optimal chromaticity coordinates and correlated color temperature (CCT) are (x = 0.33, y = 0.35) and 5609 K, respectively. Notably, the codoping of Ce3+ enhances the luminescent intensity of Dy3+ ions while excited at 327 nm. The emission color of YAG transparent ceramics can be tuned from white to yellow through energy transfer between Dy3+ and Ce3+. These new phosphors, possessing of pure CIE chromaticity and environmentally friendly nature, are promising for applications in white UV‐LEDs.  相似文献   

14.
A hard template route has been successfully developed for synthesis of β‐SiAlON:Eu phosphors at low temperatures. The synthesis utilizes mesoporous silica (SBA‐15) skeleton as an active Si source, combined with the carbothermal reduction and nitridation method. It has been shown that the additional driving force from high surface area and porosity of SBA‐15 enables β‐SiAlON:Eu (with compositions of Si6?zAlz?xOz+xN8?z?x: xEu, x = 0.010–0.200 and z = 1.000) phosphors to be formed as a dominant phase at low temperature of 1400°C. The resultant β‐SiAlON:Eu phosphor powders exhibit a typical rod‐like morphology and a well dispersed state. By tailoring the Eu2+ concentration in the phosphors, a continuous change in emission band can be realized, that is a blue emission dominated for low Eu2+ concentrations and a green emission dominated for high Eu2+ doping concentrations. Furthermore, the resultant phosphors exhibit a small thermal quenching up to high temperature of 250°C. Therefore, the developed method is beneficial to synthesize LED phosphors of oxynitride systems at lower temperatures.  相似文献   

15.
Ce3+, Nd3+ codoped (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6 phosphors were synthesized through the high‐temperature solid‐state reaction method. Luminescence spectra, absorption spectra, and decay lifetimes of these samples have been measured to prove the energy‐transfer process from Ce3+ to Nd3+. Under UV and blue light excitation, (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+,Nd3+ phosphors exhibit near‐infrared (NIR) emission, mainly peaking at 1093 nm and secondarily at 916 nm. The NIR emission matches well with the band gap of c‐Si. Results of this work suggest that the (Sr0.6Ca0.4)3(Al0.6Si0.4)O4.4F0.6:Ce3+, Nd3+ phosphors have potential application as down‐shifting luminescent convertor for enhancing the photoelectric conversion efficiency of c‐Si solar cell.  相似文献   

16.
The rare earth (RE = Eu and Tb) ions‐doped α‐Zr(HPO4)2 (ZrP) nanosheet phosphors were synthesized by direct precipitation method, and their structures and photoluminescence properties were investigated. The results of X‐ray diffraction and scanning electron microscopy indicated that the systems of ZrP:RE3+ had similar nanosheet structure except with relatively larger interlayer spacing as compared with pure α‐ZrP. Under the excitation of UV light, the ZrP:RE3+ nanosheet phosphors showed red and green emission peaks corresponding to the 5D07F2 transition of Eu3+ and the 5D47F5 transition of Tb3+, respectively. After Eu3+ and Tb3+ were co‐doped in ZrP host, not only the red and green emission peaks were simultaneously observed, but also the luminescent intensity and fluorescence lifetimes of Tb3+ were gradually decreased with the increase in Eu3+‐doping concentration, which implied the energy transfer from Tb3+ to Eu3+ happened. It was deduced that the energy transfer from Tb3+ to Eu3+ occurred via exchange interaction. Through optimization to the samples, a nearly white‐light emission with the color coordinate (0.322, 0.263) was achieved under 377 nm excitation. The ZrP:RE3+ nanosheet phosphors may be a potential color‐tailorable candidate for fabricating optoelectronic devices such as electroluminescence panels.  相似文献   

17.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

18.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

19.
LaScO3:xBi3+,yTb3+,zEu3+ (x = 0 − 0.04, y = 0 − 0.05, z = 0 − 0.05) phosphors were prepared via high-temperature solid-state reaction. Phase identification and crystal structures of the LaScO3:xBi3+,yTb3+,zEu3+ phosphors were investigated by X-ray diffraction (XRD). Crystal structure of phosphors was analyzed by Rietveld refinement and transmission electron microscopy (TEM). The luminescent performance of these trichromatic phosphors is investigated by diffuse reflection spectra and photoluminescence. The phenomenon of energy transfer from Bi3+ and Tb3+ to Eu3+ in LaScO3:xBi3+,yTb3+,zEu3+ phosphors was investigated. By changing the ratio of x, y, and z, trichromatic can be obtained in the LaScO3 host, including red, green, and blue emission with peak centered at 613, 544, and 428 nm, respectively. Therefore, two kinds of white light-emitting phosphors were obtained, LaScO3:0.02Bi3+,0.05Tb3+,zEu3+ and LaScO3:0.02Bi3+,0.03Eu3+,yTb3+. The energy transfer was characterized by decay times of the LaScO3:xBi3+, yTb3+, zEu3+ phosphors. Moreover absolute internal QY and CIE chromatic coordinates are shown. The potential optical thermometry application of LaScO3:Bi3+,Eu3+ was based on the temperature sensitivity of the fluorescence intensity ratio (FIR). The maximum Sa and Sr are 0.118 K−1 (at 473.15 K) and 0.795% K−1 (at 448.15 K), respectively. Hence, the LaScO3:Bi3+,Eu3+ phosphor is a good material for optical temperature sensing.  相似文献   

20.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号