首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The multilayer structure of capacitor demands for fine grain size of dielectric ceramics in devices, because the thinner layer which needs ceramics with fine grain size is helpful in enlarging the capacitance. In this paper, the aqueous chemical coating method was utilized to modify the BaTiO3 particles. The fine‐crystalline BaTiO3 ceramics with an average grain size below 200 nm without abnormal grain growth by co‐coating Al2O3 and SiO2 has been prepared. The phase composition, microstructures of coated particles and ceramics, and dielectric properties were investigated. For samples containing 3 wt% of Al2O3 and 1 wt% of SiO2, the energy storage density is 0.725 J/cm3 and the efficiency of the ceramic samples can keep above 80%. The breakdown strength was improved to about 190 kV/cm.  相似文献   

2.
《Ceramics International》2020,46(10):16493-16501
Yttria-stabilized zirconia (YSZ) ceramics are soundly brazed in air using a novel amorphous SiO2 nanoparticles (NPs) modified Ag filler. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction are employed to characterize the interfacial microstructure of YSZ joints. A uniform amorphous SiO2 layer is observed on the YSZ substrate surface. Micro-sized SiO2 clusters are dispersed in the Ag braze matrix, which forms the brazing seam. The content of SiO2 NPs and the brazing temperature exert significant effects on the formation of YSZ joints. The maximum shear strength of YSZ joints reaches 47 MPa under the optimized brazing conditions (Ag–2SiO2, 1050 °C/30 min, 2 MPa load pressure).  相似文献   

3.
SiC powder was coated with SiO2 layer by chemical vapor deposition, and the SiC(core)/SiO2(shell) composite powder was consolidated to a SiC/SiO2 composite with a mosaic microstructure by spark plasma sintering (SPS) at 1923 K for 1.8 ks. The SiC(core)/SiO2(shell) powder with a 80–100 nm thick SiO2 layer resulted in a SiC/SiO2 composite with a relative density of 97% and hardness and fracture toughness of 17.1 GPa and 8.4 MPa m1/2, respectively.  相似文献   

4.
The BaTiO3/BaTiO3@SiO2 (BT/BTS) ceramics with layered structure, where grain size was about 1–2 μm in the BT layer while it was about 300–400 nm in the BTS layer, were fabricated by the tape-casting and lamination method. With the increasing of SiO2 content in the BTS layer, the dielectric constant decreased gradually, and the breakdown strength was remarkably improved. Compared to the SiO2-added BaTiO3 bulk ceramics, the layered ceramics displayed significant enhancements in dielectric properties, breakdown properties and energy storage properties. The enhancement in dielectric properties was mostly attributed to the diluting effects created by this structure to SiO2. Based on the finite element analysis with the dielectric breakdown mode, it was regarded that the electric field redistribution and the interface blocking effect led to the enhancement of breakdown strength. Finally, the maximum energy density of 1.8 J/cm3 was obtained at a breakdown strength of 301.4 kV/cm for the BT/BTS3 ceramic.  相似文献   

5.
《Ceramics International》2016,42(11):12639-12643
SiO2-added barium strontium titanate ceramics Ba0.4Sr0.6TiO3-xwt%SiO2 (x=0, 0.5, 1, 3, BSTSx) were prepared via a traditional solid state reaction method. The effect of SiO2 additive on the microstructure, dielectric response and energy storage properties was investigated. The results confirmed that with the increase of SiO2 additive, diffuse phase transition arises and the dielectric constant decreases. An equivalent circuit model and Arrhenius law were used to calculate the activation energy of grain and grain boundary, which indicated that the dielectric relaxation at high temperature was caused by oxygen vacancy. While appropriate SiO2 additive led to improve the breakdown strength, further increase of SiO2 deteriorated the energy storage because of the low densification. Finally, optimized energy storage performance was obtained for BSTS0.5 ceramics: dielectric constant of 1002, dielectric loss of 0.45%, energy density of 0.86 J/cm3 and energy storage efficiency of 79% at 134 kV/cm.  相似文献   

6.
A simple and efficient way to synthesize the SiC/SiO2 nanocables decorated with the laminated porous ceramics by pyrolysis of filter papers impregnated with silicone resins in flowing argon atmosphere has been successfully developed. The phase composition of the laminated porous ceramics was measured by X-ray diffraction. The morphology and microstructure of the samples were analyzed by scanning electron microscopy and transmission electron microscopy. The experimental results show that the nanocables composed of crystalline SiC core coated with a shell of amorphous SiO2 were observed in the interfacial channels and pores of the laminated ceramics. The diameters of SiC cores were 40–80 nm and the thicknesses of SiO2 shells were 4–10 nm. The increase of the pyrolysis temperature caused an increase in the amount of SiC/SiO2 nanocables. Finally, a vapor–liquid–solid (VLS) process was discussed as the growth mechanism of the nanocables.  相似文献   

7.
Sintering additives are generally considered to be important for improving densification in fabrication of transparent ceramics. However, the sintering aids as impurities doped in the laser materials would decrease the laser output power and produce additional heat during laser operation. In this work, Yb:YAG ceramics were vacuum-sintered without additives at different temperatures for various soaking time through using ball-milled powders synthesized by co-precipitation route. The densification behavior and grain growth kinetics of Yb:YAG ceramics were systematically investigated through densification curves and microstructural characterizations. It was determined that the densification in the 1500°C-1600°C temperature range was controlled by a grain-boundary diffusion. It is revealed that the volume diffusion is the main mechanism controlling the grain growth between 1600°C and 1750°C. Although SiO2 additives can promote densification during low-temperature sintering, the optical transmittance of Yb:YAG ceramic with no additives, sintered at 1800°C for 15 hours, reaches a maximum of 83.4% at 1064 nm, very close to the measured transmittance value of Yb:YAG single crystal. The optical attenuation loss was measured at 1064 nm in Yb:YAG transparent ceramic, to be 0.0035 cm−1, a value close to that observed for single crystals.  相似文献   

8.
The dependence of energy storage properties on grain size was investigated in BaTiO3‐based ferroelectric ceramics. Modified BaTiO3 ceramics with different grain size were fabricated by two‐step sintering method from BaTiO3 powders doped with Al2O3 and SiO2 by aqueous chemical coating. For samples doped with ZnO sintering aid in addition to Al2O3‐SiO2, the density and breakdown strength increased significantly. In general, samples with smaller grains have lower polarization but higher energy storage efficiency. Al2O3‐SiO2‐ZnO‐doped samples with average grain size of 118±2 nm have an energy density of 0.83±0.04 J/cm3. Obvious segregation of doping elements in second phase and grain boundary was observed by TEM‐EDS. Impedance spectroscopy further explains the relationship between microstructure and properties. Compared to common energy storage ceramics, the grain size of this low‐cost ceramics sintered at relatively low temperature is small, and the pilot scale production has been well completed. All these features make the utilization in multilayer devices and industrial mass production possible. In addition, the obtained rules are helpful in further development of energy storage ceramics.  相似文献   

9.
Sintering kinetics of NiFe2O4-based ceramics inert anodes for aluminum electrolysis doped 7 wt% TiN nanoparticles were conducted to investigate densification and grain growth behaviors. The linear shrinkage increased gradually with the increasing sintering temperature between 1000 and 1450°C, whereas the linear shrinkage rate exhibited a broad peak. The maximum linear shrinkage rate was obtained at 1189.4°C, and the highest densification rate was achieved at the relative density of 75.20%. Based on the pressureless sintering kinetics window, the sintering process was divided into the initial stage, the intermediate stage, and the final stage. The grain growth exponent reduced with increased sintering temperature, whereas the grain growth activation energy decreased by increasing sintering temperature and shortening dwelling time. The grain growth was mainly controlled by atomic diffusion. NiFe2O4-based ceramics possessed high-temperature semiconductor essential characteristics. The electrical conductivity of NiFe2O4-based ceramics first increased and then decreased with increasing sintering temperature, reached their maximum value (960°C) of 33.45 S/cm under 1300°C, mainly attributed to the relatively dense and uniform microstructure. The thermal shock resistance of NiFe2O4-based ceramic was improved by a stronger grain boundary bonding strength and lower coefficient of linear thermal expansion.  相似文献   

10.
《Ceramics International》2017,43(10):7710-7716
SrTiO3@SiO2 nanopowder was synthesized via a core-shell nano-scale technique that is known as the Stöber process. The effect of the SiO2 concentration on microstructure, dielectric response and energy storage properties of SrTiO3@SiO2 ceramics was investigated. Transmission electron microscopy (TEM) results confirmed the formation of core–shell nanostructures with controlled shell thicknesses between 2 nm and 13 nm. After increasing SiO2, a secondary phase with Sr2TiSi2O8 appeared due to inter-diffusion reactions between the SrTiO3 core and SiO2 shells during the sintering process. The results show that both breakdown strength and energy density improved apparently. The homogeneous coating of silica on ST cores is considered to dominate the contribution to improved breakdown strength. The composition for SrTiO3 coated with 2.5 wt% SiO2 shows the maximum energy storage density (1.2 J/cm3) and a breakdown strength of 310 kV/cm. The former is higher than for pure SrTiO3 (0.19 J/cm3). Measurements of the dielectric performance indicate that the SrTiO3@SiO2 ceramics possess good bias stabilities compared to pure ST ceramics.  相似文献   

11.
Ultrafast high-temperature sintering (UHS) is a novel sintering technique with ultrashort firing cycles (e.g., a few tens of seconds). The feasibility of UHS has been validated on several ceramics and metals; however, its potential in consolidating glass–ceramics has not yet been demonstrated. In this work, an optimized carbon-free UHS was utilized to prepare ZrO2–SiO2 nanocrystalline glass–ceramics (NCGCs). The phase composition, grain size, densification behavior, and microstructures of NCGCs prepared by UHS were investigated and compared with those of samples sintered by pressureless sintering. Results showed that NCGCs with a high relative density (~95%) can be obtained within ~50 s discharge time by UHS. The UHS processing not only hindered the formation of ZrSiO4 and cristobalite but also enhanced the stabilization of t-ZrO2. Meanwhile, owing to the ultrashort firing cycles, the UHS technology allowed the NCGCs to be consolidated in a far from equilibrium state. The NCGCs showed a microstructure of spherical monocrystalline ZrO2 nanocrystallites embedded in an amorphous SiO2 matrix.  相似文献   

12.
The Microstructure and microwave dielectric properties of Bi2O3‐deficient Bi12SiO20 ceramics were investigated. A small amount of unreacted Bi2O3 phase melted during sintering at 825°C and assisted with densification and grain growth in all samples. The melted Bi2O3 reacted with remnant SiO2 during cooling to form a Bi4Si3O12 secondary phase. The nominal composition of Bi11.8SiO19.7 ceramics sintered at 825°C for 4 h had a high relative density of 97% of the theoretical density, and good microwave dielectric properties: εr = 39, Q × f = 74 000 GHz, and τf = ?14.1 ppm/°C. Moreover, this ceramic did not react with Ag at 825°C.  相似文献   

13.
The effect of simultaneous addition of CaO and SiO2 on the microstructure and magnetic properties of sintered SrO-excess Sr-hexaferrites was studied. Both additives markedly affect the grain growth behavior and the magnetic properties. CaO-additions promote densification, which results in increased remanence, but due to simultaneuous grain growth the coercivity drops to <100 kA/m. SiO2 additions are known to suppress grain growth. Simultaneous addition of CaO and SiO2 is shown to be very beneficial in tailoring a dense microstructure with relatively small grains. The ratio of CaO/SiO2 was found to be optimum at about 1, and magnets with a remanence of 430 mT and a coercivity of 300 kA/m were obtained. Transmission electron microscopy (TEM) studies and investigations by energy-dispersive analysis of X-rays (EDX) in the scanning TEM (STEM) mode show that both CaO and SiO2 are concentrated at grain boundaries and grain junctions forming an amorphous secondary phase.  相似文献   

14.
Yttria-doped zirconia electrolytes (e.g., 8 mol% yttria-stabilized ZrO2, 8YSZ) have been considered to be the most promising candidates for applications in solid oxide fuel cells (SOFC). Due to the ubiquitous presence of SiO2 impurities and wide use of Ni-containing anodes, it is therefore of great technical importance to understand the synergetic effect of NiO and SiO2 on densification, grain growth and ionic conductivities (especially the grain boundary (GB) conduction) of zirconia electrolytes. In this study, three groups of 8YSZ ceramics, with Si contents of ∼30, ∼500 and ∼3000 ppm, have been designed. 1 at% NiO was added into these materials by a wet chemical method. The addition of SiO2 has a negative effect on the sintering and densification, while the introduction of 1 at% NiO reduced the sintering temperature and promotes grain growth of the zirconia ceramics. However, the presence of small amount of NiO prevented full densification of 8YSZ ceramics. NiO also led to a decrease by ∼33% in grain interior (GI) conductivity, with little effect on the GB conduction of high-purity 8YSZ (∼30 ppm SiO2). However, the coexistence of NiO and SiO2 is extremely detrimental to total conductivity by significantly reducing the GB conduction. Moreover, it is observed that, unlike the 8YSZ-doped SiO2 with only, whose GB conduction increases greatly with increasing sintering temperature, the GB conduction of the NiO and SiO2 codoped samples is less sensitive to sintering temperature.  相似文献   

15.
The abnormal grain growth (AGG) behavior of undoped and SiO2-doped CaCu3Ti4O12 (CCTO) ceramics were investigated. With the addition of 2 wt.% SiO2, the AGG-triggering temperature decreased from 1100 to 1060 °C, and the temperature for obtaining a uniform and coarse microstructure decreased from 1140 to 1100 °C. The lowering of the AGG temperature by SiO2 addition was attributed to the formation of a CuO-SiO2-rich intergranular phase at lower temperature. The apparent dielectric permittivity of coarse SiO2-doped CCTO ceramics was ∼10 times higher than that of fine SiO2-doped CCTO ceramics at the frequency of 103–105 Hz. The doping of SiO2 to CCTO ceramics provides an efficient route of improving the dielectric properties via grain coarsening. The correlation between the microstructure and apparent permittivity suggests the presence of a barrier layer near the grain boundary.  相似文献   

16.
We report a core-shell approach that combines silver nanoparticles as the metal core component with Eu:Lu2O3 as the phosphor shell component. The core-shell design contains an optically transparent SiO2 intermediate layer that separates the metallic nanoparticle core and the phosphor shell. The thickness of the SiO2 layer is in the nanometer range and can be tuned, so as to provide for different interactions between the core and shell. To demonstrate the versatility of the design, spherical silver nanoparticles or wavelength-tunable plasmonic silver nanoplates are used as the core component. In addition, a nanocomposite phosphor was fabricated by embedding the core-shell nanoparticles into a transparent polymeric matrix. The core-shell metal-phosphor design presented here serves as framework for the fabrication of inexpensive nanocomposite scintillator.  相似文献   

17.
Flexible nanocomposite dielectrics with high dielectric constant and discharge energy density have broad application prospects in the field of energy storage. However, dielectrics with high dielectric constant tend to have a high dielectric loss. Herein, we prepared a dielectric composite material with ultra-high discharge energy density by modifying the interface between nanoparticles and poly(vinylidene fluoride-co-hexafluoropropylene) (P[VDF-HFP]). After coating a shell of insulating amorphous SiO2 (~7 nm) outside the barium titanate (BT), the electric field concentration and current density inside BT particles can be significantly reduced. In addition, coating the SiO2 shell with a polydopamine (PDA) shell (~7 nm) not only enhances the interface interaction between the nanoparticles and the polymer matrix, but also can form lots of microcapacitors in the composite. As a result, an ultra-high discharge energy density of 13.78 J/cm3 at the expense of relatively inconspicuous efficiency (~59.8%) in the BT@SiO2@PDA/P (VDF-HFP) with 2.5 wt% loading has been achieved under 460 kV/mm. This is mainly attributed to the increases of dielectric constant from 12.1 to 14.2 and the relatively low dielectric loss (0.086) at 100 Hz. Moreover, compared with the pure P (VDF-HFP) (400 kV/mm), the breakdown voltage of the composite with 2.5 wt% loading is surged to 460 kV/mm, which benefited from the hindrance of nanoparticles on carrier migration at low content. This work has realized a thin-film dielectric with ultra-high discharge energy density through a novel design of the nanoparticle structure, providing a theoretical direction for the development of polymer dielectric capacitors.  相似文献   

18.
Monophasic mullite precursors with composition of 3Al2O3·2SiO2 (3:2) were synthesized and then were sintered by Spark Plasma Sintering (SPS) to form transparent mullite ceramics. The precursor powders were calcined at 1100 °C for 2 h. The sintering was carried out by heating the sample to 1450 °C, holding for 10 min. The sintered body obtained a relative bulk density of above 97.5% and an infrared transmittance of 75–82% in wavelength of 2.5–4.3 μm without any additive. When the precursor powders were calcined at below 1100 °C, it was unfavorable for completely eliminating the residual OH, H2O and organic compound. However, when calcined temperature was too high, it was unfavorable either for full densification due to the absence of viscous flow of amorphous phase. At the same calcined temperature, the transmittance of sintered body was decreased with the increase of the sintering temperature above 1450 °C owing to the elongated grain growth.  相似文献   

19.
Core–shell poly(acrylic acid)/polystyrene/SiO2 (PAA/PS/SiO2) hybrid microspheres were prepared by dispersion polymerization with three stages in ethanol and ethyl acetate mixture medium. Using vinyltriethoxysilane (VTEOS) as silane agent, functional silica particles structured vinyl groups on surfaces were prepared by hydrolysis and polycondensation of tetraethoxysilane and VTEOS in core stage. Then, the silica particles were used as seeds to copolymerize with styrene and acrylic acid sequentially in shell stage I and stage II to form PAA/PS/SiO2 hybrid microspheres. Transmission electron microscope results show that most PAA/PS/SiO2 hybrid microspheres are about 40 nm in diameter, and the silica cores are about 15 nm in diameter, which covered with a layer of PS about 7.5‐nm thick and a layer of PAA about 5‐nm thick. This core–shell structure is also conformed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. FTIR results show that silica core, PS shell, and PAA outermost shell are bonded by covalents. In the core–shell PAA/PS/SiO2 hybrid microsphere, the silica core is rigidity, and the PAA outermost shell is polarity, while the PS layer may work as lubricant owning to its superior processing rheological property in polymer blending. These core–shell PAA/PS/SiO2 hybrid microspheres have potential as new materials for polar polymer modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1729–1733, 2006  相似文献   

20.
A high-pressure FAST/Spark Plasma Sintering method was used to produce dense SrTiO3 ceramics at temperatures of 1050 °C, more than 250 °C below typical sintering temperatures. Combining SPS with solid-state reactive sintering further improves densification. The process resulted in fine-grained microstructures with grain sizes of ∼300 nm. STEM-EDS was utilized for analyzing cationic segregation at grain boundaries, revealing no cationic segregation at the GBs after SPS. Electrochemical impedance spectroscopy indicates the presence of a space charge layer. Space charge thicknesses were calculated according to the plate capacitor equation and the Mott-Schottky model. They fit the expected size range, yet the corresponding space charge potentials are lower than typical values of conventionally processed SrTiO3. The low space charge potential was associated to low cationic GB segregation after SPS and likely results in better grain boundary conductivity. The findings offer a path to tailor grain boundary segregation and conductivity in perovskite ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号