首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ho3+/Yb3+‐codoped Bi2Ti2O7 pyrochlore thin films were prepared by a chemical solution deposition method, and their visible up‐conversion (UC) photoluminescence and dielectric relaxation were studied. Ho and Yb can be doped into Bi2Ti2O7 lattice and single pyrochlore phase is maintained. Intense visible UC photoluminescence can be observed under the excitation of a 980‐nm diode laser. Two UC emission bands centered at 551 nm and 665 nm in the spectra can be assigned to 5F4, 5S25I8 and 5F55I8 transitions of Ho3+ ions, respectively. The dependence of their UC emission intensity on pumping power indicates that both the green and red emissions of the thin films are two‐photon process. In addition, a Stokes near‐infrared emission centered at 1200 nm can be detected, which is due to 5I65I8 transition of Ho3+ ions. The thin films prepared on indium tin oxide–coated glass substrates exhibit a relatively high dielectric constant and a low dielectric loss as well as a good bias voltage stability. The dielectric relaxation of the thin films was also analyzed based on the temperature‐ and frequency‐dependent dielectric properties. This study suggests that Ho3+/Yb3+‐codoped Bi2Ti2O7 thin films are promising materials for developing multifunctional optoelectronic thin film devices.  相似文献   

2.
The color-tunable up-conversion (UC) emission was observed in ZrO2:Yb3+, Er3+ thin films synthesized on fused silica substrates using a chemical solution deposition method. The crystal structure, surface morphology image and optical transmittance of ZrO2:Yb3+, Er3+ thin films were detected in the matter of Yb3+/Er3+ doping content. Under excitation by 980?nm infrared light, intense UC emission can be obtained from ZrO2:Yb3+, Er3+ thin films. Photoluminescence study shows that there are two emission bands centered at 548?nm and 660?nm in the UC luminescence spectra, which can be owing to (2H11/2,4S3/2)→4I15/2 and 4F9/24I15/2 transitions of Er3+ ions, respectively. In addition, the color coordinate of UC emission between green-red can be tuned by properly adjusting the dopant concentration, because the composition of Yb3+/Er3+ affect the red/green ratio via the process of cross relaxation and energy back transfer. Our study suggests that ZrO2:Yb3+, Er3+ thin films can be considered as promising materials for new photoluminescence devices.  相似文献   

3.
Nanostructured Er3+‐ and Er3+/Yb3+‐activated hafnium oxide films and nanoparticles were prepared from a stable colloidal suspension and investigated by several techniques such as transmission electron microscopy, X‐ray diffraction, dynamic light scattering, atomic force microscopy, Fourier‐transform infrared spectroscopy, and photoluminescence. Low roughness and crack‐free films were deposited by dip‐coating and spin‐coating techniques on vitreous SiO2 and Si substrates. Nanostructured particles were also synthesized. Remarkable structural and spectroscopic differences were observed for hafnium oxide‐based materials as a function of the Er3+ and Er3+/Yb3+ concentration. The 4I13/24I15/2 emission bandwidth and the lifetime of the 4I13/2 metastable state of Er3+ was tailored through the rare‐earth concentration. The Er3+ emission in HfO2 can be explored for photonic applications.  相似文献   

4.
We report efficient dual‐mode up‐conversion (UC) and down‐shifting (DS) emission in a single Yb3+/Er3+‐co‐doped β‐NaYF4 microcrystals with controlled morphology and size via a simple Na+ ion‐exchange modification (IEM) method. IEM well preserves the crystal structure and monodispersed morphology of hydrothermal‐synthesized β‐NaYF4. Meanwhile, IEM gives rise to the significant enhancement of UC emission intensity up to 3800 times and strongly enhanced DS emission intensity of Er3+ and Yb3+ by several times in β‐NaYF4:Yb3+,Er3+ microcrystals. IEM also strongly prolongs the DS emission lifetimes of Er3+ and Yb3+ in visible and near‐infrared region. The enhanced UC and DS emission intensities and prolonged lifetimes in β‐NaYF4:Yb3+,Er3+ are mainly ascribed to the dispersing of localized Yb3+ and Er3+ clusters during IEM.  相似文献   

5.
SrIn2O4, which shows lower phonon energy than CaIn2O4, is not only a good photocatalyst but also can be an excellent up‐conversion (UC) host to exhibits UC luminescence. In this work, Yb3+ and/or Er3+ doped SrIn2O4 phosphors were synthesized, and their UC luminescence properties were studied and compared with those in the CaIn2O4 host. The structure of SrIn2O4: 0.01Er3+ and SrIn2O4: 0.1Yb3+/0.01Er3+ samples were refined by the Rietveld method and found to that SrIn2O4: 0.1Yb3+/0.01Er3+ showed increasing unit cell parameters and cell volume, indicating In3+ sites were substituted successfully by Yb3+ and/or Er3+ ions. From the UC luminescence spectra and diffuse reflection spectra, Er3+‐doped SrIn2O4 showed very weak luminescence due to ground state absorption of Er3+; Yb3+/Er3+ codoped SrIn2O4 presented strong green (550 nm) and red (663 nm) UC emissions which were assigned to energy transfer from Yb3+ transition 2F7/22F5/2 to the Er3+ transition 4S3/24I15/2 and 4F9/24I15/2. Comparing with CaIn2O4, Yb3+/Er3+ codoped SrIn2O4 showed obvious advantages with higher UC luminescent intensity. The pumping powers study showed that UC emissions in Yb3+/Er3+ codoped SrIn2O4 were attributed to energy transfer of Yb3+→Er3+ with a two‐photon process. The possible UC luminescent mechanism of Yb3+/Er3+‐doped SrIn2O4 was discussed.  相似文献   

6.
β‐NaGdF4:Yb3+,Er3+ upconversion (UC) microcrystals were prepared by a facile hydrothermal process with the assistance of ethylene diamine tertraacetic acid (EDTA). The β‐NaGdF4 UC microcrystal morphology was controlled by changing the doses of EDTA and NaF. Uniform hexagonal structure can be obtained at the 2 mmol EDTA and 9‐10 mmol NaF. The UC emissions of β‐NaGdF4:Yb3+,Er3+ microcrystals were tuned by the variation of Eu3+ doping level (0%‐5%), where the red/green intensity ratio decreased with the Eu3+ concentration increase. It was found on the base of rate equations that with the Eu3+ doping, the energy back transfer process 2H11/2/4S3/2 (Er3+) → 4I13/2 (Er3+) decreased. In addition, an energy‐transfer process from 4F7/2 (Er3+) to 5D1 (Eu3+) and a cross relaxation process of 7H9/2 (Er3+) + 5D0 (Eu3+) → 4F7/2 (Er3+) + 5D2 (Eu3+) were proposed and verified by rate equations, which dominated the energy‐transfer mechanism between Er3+ and Eu3+, resulted in the spectra tuning of β‐NaGdF4:Yb3+,Er3+. The results suggested that the color tuning of β‐NaGdF4:Yb3+,Er3+,Eu3+ UC microcrystals would have potential applications in such fields as flat‐panel displays, solid‐state lasers, and photovoltaics.  相似文献   

7.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

8.
Upconversion (UC) peak of 4S3/24I15/2 transition of Er3+ is close to that of 2H11/24I15/2 transition. The UC emission splitting of Er3+ caused by coordination fields of host results in that it is difficult to confirm which transitions (4S3/24I15/2 or 2H11/24I15/2) are responsible for the splitting UC emission peaks. In this work, the UC luminescence peaks located at 524, 540, 551, 565, 662, 677, and 683 nm were observed in the Ba2Y(BO3)2Cl:Yb3+, Er3+ phosphor upon the 980 nm excitation. The 524 and 540 nm UC emissions intensity were increased, while the 551 and 565 nm UC emissions intensity were decreased with the temperature increasing from 323 to 573 K, which is attributed to the phonon‐assisted population inversion from the 4S3/2 to 2H11/2 level. The temperature dependence of UC emission spectra demonstrated that the 524 and 540 nm UC emissions are from 2H11/24I15/2 transition, and 551 and 565 nm UC emissions are from the 4S3/24I15/2 transition. Temperature sensing property was characterized by the UC intensity ratio of the 2H11/24I15/2 transition to 4S3/24I15/2 transition. The Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor has potential application as the non‐contact temperature sensor.  相似文献   

9.
A class of Yb3+/Er3+ co‐doped NaY(MoO4)2 upconversion (UC) phosphors have been successfully synthesized by a facile hydrothermal route with further calcination. The structural properties and the phase composition of the samples were characterized by X‐ray diffraction (XRD). The UC luminescence properties of Yb3+/Er3+ co‐doped NaY(MoO4)2 were investigated in detail. Concentration‐dependent studies revealed that the optimal composition was realized for a 2% Er3+ and 10% Yb3+‐doping concentration. Two‐photon excitation UC mechanism further illustrated that the green enhancement arised from a novel energy‐transfer (ET) pathway which entailed a strong ground‐state absorption of Yb3+ ions and the excited state absorption of Yb3+–MoO42? dimers, followed by an effective energy transfer to the high‐energy state of Er3+ ions. We have also studied the thermal properties of UC emissions between 303 and 523 K for the optical thermometry behavior under a 980 nm laser diode excitation for the first time. The higher sensitivity for temperature measurement could be obtained compared to the previous reported rare‐earth ions fluorescence based optical temperature sensors. These results indicated that the present sample was a promising candidate for optical temperature sensors with high sensitivity.  相似文献   

10.
Er3+–Yb3+ codoped AgLa(MoO4)2 phosphors with intense green emission from 2H11/2/4S3/24I15/2 transitions and negligible red emission from 4F9/24I15/2 transition of Er3+ were synthesized by sol–gel process. Its temperature sensing performance was evaluated based on the temperature dependence of fluorescence intensity ratio (FIR) of two green emission bands in the range 300–510 K. The maximum sensitivity of AgLa(MoO4)2: 0.02Er3+/0.4Yb3+ is approximately 0.018 K?1 at 480 K, which is much higher than those of reported samples based on green emissions of Er3+. Result suggests that AgLa(MoO4)2: Er3+/Yb3+ has a great potential application in optical temperature sensors.  相似文献   

11.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

12.
Er3+,Yb3+ co-doped CaWO4 polycrystalline powders were prepared by a solid-state reaction and their up-conversion (UC) luminescence properties were investigated in detail. Under 980 nm laser excitation, CaWO4: Er3+,Yb3+ powder exhibited green UC emission peaks at 530 and 550 nm, which were due to the transitions of Er3+ (2H11/2)→Er3+ (4I15/2) and Er3+ (4S3/2)→Er3+ (4I15/2), respectively. Effects of Li+ tri-doping into CaWO4: Er3+,Yb3+ were investigated. The introduction of Li+ ions reduced the optimum calcinations temperature about 100 °C by a liquid-phase sintering process and the UC emission intensity was remarkably enhanced by Li+ ions, which could be attributed to the lowering of the symmetry of the crystal field around Er3+ ions.  相似文献   

13.
Uniform and well‐crystallized NaGd(MoO4)2: Yb3+/Er3 + microcrystals with tetragonal plate morphology were synthesized by a facile hydrothermal method. The structure and phase purity of the samples were identified by powder XRD analysis. The steady‐state and transient luminescence spectra were measured and analyzed. Under 980 nm excitation, intense green luminescence at 531 and 553 nm, and red luminescence at 657 and 670 nm were observed. The optimum doping concentrations for Yb3+ and Er3+ are determined to be 20% and 1% in NaGd(MoO4)2 tetragonal plate microcrystals. With increasing Yb3+ doping concentrations, the total integral emission intensities increase first and then decrease. The red/green intensity ratio of NaGd(MoO4)2: Yb3+/Er3+ microcrystals increases from 0.4 to 1.0 with the increase in Yb3+ concentrations. Based on the energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the double logarithmic plot of upconversion intensities versus pump powers. The energy‐transfer mechanisms for green and red upconversion luminescence are ascribed to two‐photon processes at lower Yb3+ concentrations, and involve high‐Yb3+‐induced one‐photon processes at higher Yb3+ concentrations. For the red upconversion luminescence, energy back‐transfer process, that is, 4S3/2 (Er3+) + 2F7/2 (Yb3+) → 4I13/2 (Er3+) + 2F5/2 (Yb3+), is dominant at higher Yb3+ concentrations. Theoretical model of the energy‐transfer mechanisms based on rate equations is established, which agrees well with the experimental results.  相似文献   

14.
Er3+‐doped CaBi4Ti4O15 (CBT) bismuth layer structured ferroelectric ceramics were synthesized by the solid state method. Photoluminescence (UC), dielectric, ferroelectric, and piezoelectric properties were systematically studied for the first time. The Er3+‐doped CBT sample showed a bright up‐conversion UC while simultaneously obtaining an increased Curie temperature (Tc), enhanced ferroelectric and piezoelectric properties. The UC properties of Er3+‐doped CBT were investigated as a function of Er3+ concentration and incident pump power. A bright green (556 nm) and a weak red (674 nm) emission bands were obtained under excitation (980 nm) at room temperature, which correspond to the transitions from 4S3/2, and 4F9/2 to 4I15/2, respectively. The dependence of UC emission intensity on pumping power indicated that three‐photon and two‐photon processes are involved in the green and red UC emission, respectively. Studies on dielectric properties indicated that the introduction of Er increased the Tc with relatively smaller values of dielectric loss of CBT, thus making this ceramic suitable for sensor applications at higher temperatures. Ferroelectric and piezoelectric measurements showed that the Er3+‐doped ceramics showed an increase in remnant polarization and piezoelectric constant. As a multifunctional material, Er‐doped CBT ferroelectric oxide showed great potential in sensor, optical‐electro integration, and coupling device applications.  相似文献   

15.
Using a modified sol–gel method, LiLa(MoO4)2: Tm3+/Ho3+/Yb3+ phosphors with tailorable up‐conversion (UC) emission colors were prepared. Under the excitation of a 980 nm laser diode, up‐conversion red and green emissions in Ho3+/Yb3+ co‐doped and blue emission in Tm3+/Yb3+ co‐doped LiLa(MoO4)2 were observed, respectively. The intensities of the RGB (red, green, and blue) emissions could be controlled by varying concentrations of Tm3+ or Ho3+, and the optimal composition was also determined. In Tm3+/Ho3+/Yb3+ co‐doped LiLa(MoO4)2, the UC emission colors could be tuned from blue through white to yellow by adjusting the concentrations of Tm3+ or Ho3+. The UC excitation mechanisms were also investigated based on the power dependence of UC luminescence intensity.  相似文献   

16.
Er3+/Yb3+/Li+‐tridoped Y2Ti2O7 nanophosphors were synthesized via a facile sol–gel process. The samples were characterized by the inductively coupled plasma atomic emission spectrometer (ICP‐AES), X‐ray diffraction (XRD), transmission electron microscopy (TEM), and infrared‐to‐visible upconversion (UC) luminescence spectra. XRD analysis showed that the crystallization temperature of pyrochore‐type Y2Ti2O7 was reduced due to the flux effect of Li+ ions, whereas TEM measurements confirmed that the particles size of (Y0.815Er0.01Yb0.075Li0.10)2Ti2O7 was about 30–40 nm when calcining at 800°C for 1.0 h. The calcining temperature and Li+ ion concentration dependence on UC luminescence spectra were investigated. It was found that, when incorporating 10.0 mol% Li+ ion, the UC red and green emission intensity was drastically increased by a factor of 18.6 and 8.3, respectively. The enhancement of UC emission may be mainly attributed to the modification of local symmetry around Er3+ ions by tridoping Li+ ions. And also, the pump power dependence of the emission intensity was investigated to understand the fundamental UC mechanism.  相似文献   

17.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

18.
CaGd2(MoO4)4:Er3+/Yb3+ phosphors with the doping concentrations of Er3+ and Yb3+ (x = Er3+ + Yb3+, Er3+ = 0.05, 0.1, 0.2, and Yb3+ = 0.2, 0.45) have been successfully synthesized by the microwave sol–gel method, and the crystal structure refinement and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after heat‐treatment at 900°C for 16 h, showed a well‐crystallized morphology. Under the excitation at 980 nm, CaGd2(MoO4)4:Er3+/Yb3+ particles exhibited strong 525 and 550‐nm emission bands in the green region and a weak 655‐nm emission band in the red region. The Raman spectrum of undoped CaGd2(MoO4)4 revealed about 15 narrow lines. The strongest band observed at 903 cm?1 was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedrons. The spectra of the samples doped with Er and Yb obtained under 514.5 nm excitation were dominated by Er3+ luminescence preventing the recording Raman spectra of these samples. Concentration quenching of the erbium luminescence at 2H11/24I15/2 and 4S3/24I15/2 transitions in the CaGd2(MoO4)4:Er3+/Yb3+ crystal structure was established to be approximately at the 10 at.% doping level.  相似文献   

19.
20.
La2O2CN2:Er3+and La2O2CN2:Er3+/Yb3+ upconversion (UC) luminescence nanofibers were successfully fabricated via cyanamidation of the respective relevant La2O3:Er3+ and La2O3:Er3+/Yb3+ nanofibers which were obtained by calcining the electrospun composite nanofibers. The morphologies, structures, and properties of the nanofibers are investigated. The mean diameters of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are 179.46 ± 12.58 nm and 198.85 ± 17.07 nm, respectively. It is found that intense green and weak red emissions around 524, 542, and 658 nm corresponding to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24Il5/2 energy levels transitions of Er3+ ions are observed for La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers under the excitation of a 980‐nm diode laser. Moreover, the emitting colors of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are all located in the green region. The upconversion luminescent mechanism and formation mechanism of the nanofibers are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号