首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low‐firing microwave dielectric ceramic Ba2BiV3O11 was prepared via solid‐state reaction method. Ba2BiV3O11 ceramic could be well sintered at 840°C–880°C, with a εr ~14.2, a high × f value ~68 700 GHz (at 8.7 GHz), and a negative temperature coefficient of ?81 ppm/°C. τf of Ba2BiV3O11 was tuned to be near zero by formation of a composite with TiO2. 0.7Ba2BiV3O11–0.3TiO2 ceramic sintered at 910°C showed improved properties with εr = 15.7, × f = 53 200 GHz, and τf  = ?2 ppm/°C.  相似文献   

2.
New dielectric ceramics are prepared by the conventional solid‐state ceramic route. Effects of LZB glass on sintering, phase purity, microstructure, and dielectric properties of Li2ZnTi3O8 ceramics have been investigated. Adding LZB lowers sintering temperature from 1050°C to 875°C, and does not induce much degradation of dielectric properties. The 1.0 wt% LZB glass‐added ceramic has better properties of εr = 23.9, Q × = 31,608 GHz, τf = ?14.3 ppm/°C. Additions of TiO2 markedly improve microwave properties. Typically, the Li2ZnTi3O8 + 1 wt%LZB + 3.5 wt%TiO2 sintered at 900°C shows εr = 26.1, Q × = 45,168 GHz, τf = ?4.1 ppm/°C. Compatibility with Ag electrode indicates that this material may be applied to LTCC devices.  相似文献   

3.
CaMgSi2O6 (CMS) ceramics prepared by the solid-state ceramic route have a sintering temperature of 1300°C/2 h. The sintering temperature of CMS was reduced below the melting point of Ag using low-melting LBS and LMZBS glasses. In the case of CMS+15 wt% LMZBS sintered at 900°C/2 h, the dielectric properties obtained were ɛr=8.2, Qu×f=32,000 GHz (10.15 GHz), and τf=–48 ppm/°C. The CMS+15 wt% LBS composite, sintered at 925°C/2 h, showed ɛr=8, Qu×f=15,000 GHz (10.17 GHz), and τf=–49 ppm/°C. The chemical compatibility of Ag with the ceramic–glass composites was also investigated for low-temperature co-fired ceramic applications.  相似文献   

4.
The 10 mol% ZnO–2 mol% B2O3–8 mol% P2O5–80 mol% TeO2 (ZBPT) glass was prepared by quenching as well as slowly cooling the melt. The ZBPT glass prepared by both methods show similar microwave dielectric properties. ZBPT glass has an εr of 22.5 (at 7 GHz), Qu × f of 1500 GHz, and τf of ?100 ppm/°C. The ceramic‐glass composites of Sr2ZnTeO6 (SZT) and ZBPT is prepared through two convenient methods: (a) conventional way of co‐firing the ceramic with ZBPT glass powder and (b) a nonconventional facile route by co‐firing the ceramic with precursor oxide mixture of ZBPT glass at 950°C. In the former route, SZT + 5 wt% ZBPT composite sintered at 950°C showed moderately good microwave dielectric properties (εr = 13.4, Qu × f = 4500 GHz and τf = ?52 ppm/°C). Although the SZT + 5 wt% ZBPT composite prepared through the nonconventional method also showed similar microwave dielectric properties (εr = 13.8, Qu × f = 5300 GHz and τf = ?50 ppm/°C), the synthesis procedure is much simplified in the latter case. The composites are found to be chemically compatible with Ag. The composite containing 5 wt% ZBPT prepared through conventional and nonconventional ways shows linear coefficients of thermal expansion of 7.0 ppm/°C and 7.1 ppm/°C, respectively. Both the composites have a room‐temperature thermal conductivity of 2.1 Wm?1 K?1.  相似文献   

5.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

6.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

7.
We report a series of ReVO4 (Re = La, Ce) microwave dielectric ceramics fabricated by a standard solid‐state reaction method. X‐ray diffraction and scanning electron microscopy measurements were performed to explore the phase purity, sintering behavior, and microstructure. The analysis revealed that pure and dense monoclinic LaVO4 ceramics with a monazite structure and tetragonal CeVO4 ceramics with a zircon structure could be obtained in their respective sintering temperature range. Furthermore, LaVO4 and CeVO4 ceramics sintered at 850°C and 950°C for 4 h possessed out‐bound microwave dielectric properties: εr = 14.2, Q × f = 48197 GHz, τf = ?37.9 ppm/°C, and εr = 12.3, Q × f = 41 460 GHz, τf = ?34.4 ppm/°C, respectively. The overall results suggest that the ReVO4 ceramics could be promising materials for low‐temperature‐cofired ceramic technology.  相似文献   

8.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

9.
Ultralow‐temperature sinterable Ba3V4O13 ceramics have been prepared through solid‐state ceramic route. Structural properties of the ceramic material are studied using powder X‐ray diffraction. Ba3V4O13 ceramic has monoclinic structure and the existence of [V4O13]6? polyhedra is confirmed through Laser Raman studies. The sample sintered at 600°C for 1 h shows dense microstructure with microwave dielectric properties of εr = 9.6, Q × f = 56 100 GHz, and τf = ?42 ppm/°C. The ceramics under study show good chemical compatibility with aluminum during cofiring.  相似文献   

10.
The crystal structure and microwave dielectric properties of a novel low‐firing compound Li2Mg2W2O9 were investigated in this study. The phase purity and crystal structure were investigated using X‐ray diffraction analyses and Rietveld refinement. The best microwave dielectric properties of the ceramic with a low permittivity (εr) ~11.5, a quality factor (× f) ~31 900 GHz (at 10.76 GHz) and a temperature coefficient of the resonant frequency (τf) ~ ?66.0 ppm/°C were obtained at the optimum sintering temperature (920°C). CaTiO3 was added into the Li2Mg2W2O9 ceramic to obtain a near zero τf, and 0.93Li2Mg2W2O9–0.07CaTiO3 ceramic exhibited improved microwave dielectric properties with a near‐zero τf ~ ?1.3 ppm/°C, a εr ~21.6, a high Qu × f value ~20 657 GHz. The low sintering temperature and favorable microwave dielectric properties make it a promising candidate for LTCC applications.  相似文献   

11.
Dense Bi2Te2W3O16 ceramics were prepared by the conventional solid‐state reaction route. X‐ray diffraction data show the room‐temperature (RT) crystal symmetry of Bi2Te2W3O16 to be well described by the centrosymmetric monoclinic C2/c space group [a = 21.280(5) Å, b = 5.5663(16) Å, c = 12.831(3) Å and β = 124.014(19)° and Z = 4]. Raman spectroscopy analyses are in broad agreement with space group assignment, but also revealed the presence of Bi2W2O9 as a secondary phase. This phase is present as plate‐like grains embedded on a fine‐grained equiaxed matrix, as revealed by scanning electron microscopy. From the fitting of infrared reflectivity data the relative permittivity, εr, was estimated as 34.2, and the intrinsic quality factor, Qu × f as 57 500 GHz. At RT and microwave frequencies, Bi2Te2W3O16 ceramics sintered at 720°C for 6 h exhibit εr ~ 34.5, Qu × f = 3173 GHz (at 7.5 GHz), and temperature coefficient of resonant frequency, τf = ?92 ppm/°C. This shows a good agreement between the estimated and measured εr values, but also shows that, in principle, the dielectric losses of the ceramics are of extrinsic origin.  相似文献   

12.
The Microstructure and microwave dielectric properties of Bi2O3‐deficient Bi12SiO20 ceramics were investigated. A small amount of unreacted Bi2O3 phase melted during sintering at 825°C and assisted with densification and grain growth in all samples. The melted Bi2O3 reacted with remnant SiO2 during cooling to form a Bi4Si3O12 secondary phase. The nominal composition of Bi11.8SiO19.7 ceramics sintered at 825°C for 4 h had a high relative density of 97% of the theoretical density, and good microwave dielectric properties: εr = 39, Q × f = 74 000 GHz, and τf = ?14.1 ppm/°C. Moreover, this ceramic did not react with Ag at 825°C.  相似文献   

13.
ALn4(MoO4)7 (A = Ba, Sr, Ca, Ln = La, Pr, Nd, Sm) ceramics are prepared by solid state ceramic route and the structural properties have been studied using powder X-ray diffraction and laser Raman spectroscopy. All the ceramics under study are phase pure except BaLn4(MoO4)7 (Ln = Pr, Nd, Sm). Scanning electron micrographs of the sintered ceramics show closely packed microstructure with phase homogeneity. BaLa4(MoO4)7 ceramic has a maximum density of 4.5 g/cm3 at 710°C together with ԑr = 11.8, Qu x f = 39 300 GHz, and τf = −68 ppm/oC. SrLa4(MoO4)7 ceramic exhibited a maximum density of 4.4 g/cm3, ԑr = 11.7, Qu x f = 44 200 GHz, and τf = −83 ppm/°C at 740°C whereas CaLa4(MoO4)7 ceramic possess a maximum density of 4.2 g/cm3, ԑr = 11.4, Qu x f = 30 200 GHz and τf = −90 ppm/oC at 750°C at microwave frequencies. The chemical compatibility of the BaLa4(MoO4)7, SrLa4(MoO4)7 and CaLa4(MoO4)7 ceramics with silver electrode have been studied using powder X-ray diffraction of the co-fired samples and is further examined with energy dispersive X-ray spectroscopy.  相似文献   

14.
A homogeneous Bi12TiO20 phase was developed in a specimen that was calcined at 700°C without the formation of a secondary phase. A small amount of the Bi12TiO20 phase melted during sintering and assisted the densification of the specimen. The Bi2O3 and Bi8TiO14 secondary phases were found in all specimens. All the specimens that were sintered at temperatures ≥775°C exhibited high relative densities above 98% of the theoretical density. The Q × f value of the Bi12TiO20 ceramics was influenced by the grain size. The Bi12TiO20 ceramics sintered at 800°C for 5 h showed promising microwave dielectric properties of εr = 41, Q × f = 10 400 GHz, and τf = ?10.8 ppm/°C.  相似文献   

15.
The structure, microwave dielectric properties, and low‐temperature sintering behavior of acceptor/donor codoped Li2TiO3 ceramics [Li2Ti1?x(Al0.5Nb0.5)xO3, x = 0–0.3] were investigated systematically. The x‐ray diffraction confirmed that a single‐phase solid solution remained within 0 < x ≤ 0.2 and secondary phases started to appear as x > 0.2, accompanied by an order–disorder phase transition in the whole range. Scanning electron microscopy observation indicated that the complex substitution of Al3+ and Nb5+ produced a significant effect on the microstructural morphology. Both microcrack healing and grain growth contributed to the obviously enhanced Q×f values. By comparison, the decrease of εr and τf values was ascribed to the ionic polarizability and the cell volume, respectively. Excellent microwave dielectric properties of εr ~ 21.2, Q×f ~ 181 800 GHz and τf  ~ 12.8 ppm/°C were achieved in the x = 0.15 sample when sintered at 1150°C. After 1.5 mol% BaCu(B2O5) additive was introduced, it could be well sintered at 950°C and exhibited good microwave dielectric properties of εr ~ 20.4, Q×f ~ 53 290 GHz and τf ~ 3.6 ppm/°C as well. The cofiring test of the low‐sintering sample with Ag powder proved its good chemical stability during high temperature, which enables it to be a promising middle‐permittivity candidate material for the applications of low‐temperature cofired ceramics.  相似文献   

16.
Bi12GeO20 ceramics sintered at 800°C had dense microstructures, with an average grain size of 1.5 μm, a relative permittivity (εr) of 36.97, temperature coefficient of resonance frequency (τf) of ?32.803 ppm/°C, and quality factor (Q × f) of 3137 GHz. The Bi12‐xGeO20‐1.5x ceramics were well sintered at both 800°C and 825°C, with average grain sizes exceeding 100 μm for x ≤ 1.0. However, the grain size decreased for x > 1.0 because of the Bi4Ge3O12 secondary phase that formed at the grain boundaries. Bi12‐xGeO20‐1.5x (x ≤ 1.0) ceramics showed increased Q × f values of >10 000 GHz, although the εr and τf values were similar to those of Bi12GeO20 ceramics. The increased Q × f value resulted from the increased grain size. In particular, the Bi11.6GeO19.4 ceramic sintered at 825°C for 3 h showed good microwave dielectric properties of εr = 37.81, τf = ?33.839 ppm/°C, and Q × f = 14 455 GHz.  相似文献   

17.
A series of microwave dielectric ceramics in the compositions of K2Mo2O7, K2Mo3O10, and K2Mo4O13 in K2O–MoO3 binary system with ultra low sintering temperatures were prepared using the solid‐state reaction method. Their synthesis, phase composition, compatibility with metal electrodes, microstructures, and microwave dielectric properties were investigated. The K2Mo2O7 ceramic sintered at 460°C with a triclinic structure has a relative permittivity of 7.5, a × f value of 22 000 GHz, and a τf value of ?63 ppm/°C. The X‐ray diffraction patterns indicate that K2Mo2O7 does not react with Ag and Al electrodes at the co‐fired temperatures. The K2Mo3O10 ceramic can be sintered well at 520°C with a relative permittivity of 5.6, a × f value of 35 830 GHz, and a τf value of ?92 ppm/°C. It has compatibility with Ag electrode. The K2Mo4O13 ceramic sintered at 540°C possesses good microwave dielectric properties with a relative permittivity of 6.8, a Q × f value of 39 290 GHz and a τf value of ?67 ppm/°C and it is compatible with Al electrode. For K2Mo2O7 and K2Mo4O13, it is found that the grain sizes and the number of grain boundaries play an important role in the dielectric loss. From this study, it can be seen that the three ceramics in K2O–MoO3 system have good microwave dielectric properties, ultra‐low sintering temperatures, non‐toxic, and low‐cost characteristics. So they can be potentially applied to ultra‐LTCC devices.  相似文献   

18.
Molten salt synthesis (MSS) of the eight‐layer hexagonal perovskite Ba8NiTa6O24 was performed using mixed KCl–NaCl salts in comparison with solid‐state synthesis (SSS). In the SSS, the hexagonal Ba8NiTa6O24 formed at 1300°C via a reaction between cubic Ba3NiTa2O9 and hexagonal Ba5Ta4O15. While the MSS did not lower the synthesis temperature of the hexagonal Ba8NiTa6O24 but stabilized an unusual A‐ and B‐site‐deficient cubic perovskite polymorph of Ba8NiTa6O24 below 1350°C as an intermediate phase prior to transforming into the hexagonal phase. This cubic polymorph contains ~3% A‐site and ~9.5% B‐site vacancies plus ~3% Ba cations in the B sites and demonstrated remarkable stability below 1350°C when without presence of the molten salt. The cubic polymorph displayed larger ε ~ 36 and τf ~ 110 ppm/°C than the hexagonal polymorph from the MSS (ε ~ 29 and τf ~ 67 ppm/°C). The hexagonal SSS‐processed ceramics showed advantageous dielectric properties (Qf ~ 52 000 GHz, τf ~ 30 ppm/°C) over both cubic and hexagonal MSS‐processed ones (Qf ~ 18 600–20 000 GHz), while displaying anisotropic grain growth. The anisotropic grain growth was suppressed significantly by the MSS processing.  相似文献   

19.
Low‐firing and temperature stable microwave dielectric ceramics of Ba2LnV3O11 (Ln = Nd, Sm) were prepared by solid‐state reaction. X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the phase purity, crystal structure, sintering behavior, and microstructure. The XRD patterns indicated that Ba2LnV3O11 (Ln = Nd, Sm) ceramics belong to monoclinic crystal system with P21/c space group in the whole sintering temperature range (800°C ‐900°C). Both ceramics could be well densified at 880°C for 4 hours with relative densities higher than 96%. The Ba2LnV3O11 (Ln = Nd, Sm) samples sintered at 880°C for 4 hours exhibited excellent microwave dielectric properties: εr = 12.05, Q × f = 23 010 GHz, τf = ?7.7 ppm/°C, and εr = 12.19, Q × f = 27 120 GHz, τf = ?16.2 ppm/°C, respectively. Besides, Ba2LnV3O11 (Ln = Nd, Sm) ceramics could be well co‐fired with the silver electrode at 880°C.  相似文献   

20.
The microwave dielectric ceramic Li9Zr3NbO13 was found and investigated. Prepared via the solid‐state reaction method, the Li9Zr3NbO13 formed as a Li2ZrO3‐type solid solution at 880‐900°C, with monoclinic structure in C2/c space group and Z = 4. Typically, the Li9Zr3NbO13 sintered at 900°C exhibited the excellent microwave dielectric properties of εr = 21.3, Q×f = 43 600 GHz (at 7.4 GHz), τf = 7.3 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号