首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is a critical mediator of various biological functions. NO is generated from L-arginine by nitric oxide synthase (NOS), which has three isoforms; endothelial-type NOS (eNOS) and brain-type NOS (bNOS) are constitutive enzymes, and inducible-type NOS (iNOS) is expressed after stimulation. We investigated the expression of NOS in normal human skin by an immunohistochemical technique and western blotting analysis. In human skin, epidermal keratinocytes and the outer root sheath were labeled with not only eNOS antibody but also with iNOS antibody. Both eNOS and iNOS protein in epidermal keratinocytes were confirmed by western blotting. eNOS immunoreactivity was observed in endothelial cells, fibroblasts, the arrector pili muscle, apocrine secretory gland, eccrine coiled duct, and eccrine secretory gland. bNOS immunoreactivity was observed in mast cells. No staining with anti-bNOS antibody was observed in any other cell type. Our present findings suggest that epidermal keratinocytes in normal human skin contain both eNOS and iNOS.  相似文献   

2.
The presence of nitric oxide (NO) in the kidney has been implicated in the pathogenesis of human glomerulonephritis. However, the exact type of glomerular cells that express NO synthase (NOS) and the NOS isoform involved in the local production of NO has not been identified in the human diseased kidney. We examined the expression of three isoforms of NOS, inducible NOS (iNOS), endothelial NOS (eNOS) and brain NOS (bNOS) in the renal tissue of patients with IgA nephropathy (IgAN, N = 10), lupus nephritis (LN, N = 5), membranous nephropathy (MN, N = 5) and minimal change nephrotic syndrome (MCNS, N = 5). Sections were immunostained and the correlation between the expression of each NOS and the degree of glomerular injury in that section was also examined. Normal portions of surgically resected kidneys served as controls. eNOS was present in glomerular endothelial cells and endothelium of cortical vessels in the control and diseased kidneys. iNOS was localized in mesangial cells, glomerular epithelial cells and infiltrating cells in the diseased glomeruli, whereas immunostaining for iNOS was hardly detected in control kidneys. In addition, the expression pattern of eNOS in each glomerulus was the reverse of that of iNOS. In IgAN and LN, the extent of staining for eNOS correlated negatively with the degree of glomerular injury, while the extent of staining for iNOS correlated positively with the degree of glomerular injury in the same tissues. bNOS was not detected in normal or nephritic glomeruli. Our results indicate the presence of a NO pathway in human diseased kidney, and suggest that NO derived from eNOS and iNOS may be involved in the progression of renal diseases and that NO derived from each NOS may play an important role in different way in human inflamed glomeruli.  相似文献   

3.
4.
Nitric oxide synthase (NOS) activity was detected in soluble and membranous fractions of adipose tissue homogenates of control rats. After LPS-treatment, this activity was (i) markedly increased (about 10-fold) in both fractions, (ii) unaltered after dexamethasone pretreatment, (iii) partly calcium-calmodulin sensitive, and (iv) almost entirely accounted by the NOS activity found in isolated adipocytes. In adipose tissue homogenates from control rats, Western blot analysis demonstrated the presence of the endothelial (eNOS) isoform in the membranous fraction of control rats and of the inducible (iNOS) isoform in the soluble and membranous fractions. After LPS treatment, the amount of immunoreactive iNOS protein was dramatically increased, suggesting that adipose tissue is an important site of NO production during the endotoxic shock.  相似文献   

5.
Nitric oxide (NO) is produced by enzymes called nitric oxide synthases (NOS). At least three different isoforms of NOS have been identified in the kidney. This study examines the effects of selective inhibition of the inducible isoform (iNOS) and the neuronal isoform (bNOS) on the glomerular capillary pressure (PGC), through studies of the tubuloglomerular feedback (TGF) mechanism in anaesthetized rats. The proximal tubular stop-flow pressure (PSF) was measured to estimate changes in PGC obtained after activation of the TGF system by varying the loop of Henle perfusion rate with artificial ultrafiltrate including vehicle, NOS inhibition or L-arginine. Infusion of nonspecific NOS inhibition (N omega-Nitro-L-arginine) increased maximal TGF responses (delta PSF) by 84% and L-arginine decreased delta PSF by 37%. Aminoguanidine, a selective iNOS-inhibitor, failed to increase delta PSF, whereas the nonspecific NOS inhibitor methylguanidine increased delta PSF by 64%. 7-Nitro indazole (7-NI), a selective bNOS inhibitor, increased delta PSF by 57% when infused intratubularly, and intraperitoneal administration of 7-NI increased delta PSF by 78%, without any change in blood pressure. Since bNOS is exclusively located in the macula densa (MD) cells, these results confirm and strengthen the obligatory role of MD-produced NO in regulation of TGF and PGC, which has been suggested earlier. iNOS, widely expressed in the kidney, does not seem to play any important role in regulation of PGC.  相似文献   

6.
In the vascular system, distinct isoforms of nitric oxide synthase (NOS) generate nitric oxide (NO), which acts as a biological messenger. Its role in the development of transplant arteriosclerosis (TA) is still unclear. To investigate whether NO is involved in TA, we studied the expression of NOS isoforms, inducible NOS (iNOS) and endothelial NOS (eNOS), by immunohistochemistry and in situ hybridization during the first two post-transplantation months and their relation with cold ischemia (1 to 24 hours) and reperfusion injury using an aortic transplantation model in the rat. We found an increased iNOS expression in the intima and adventitia and a decreased expression in the media, whereas eNOS expression was not significantly altered during the development of TA. Co-localization studies suggested that iNOS-positive cells were vascular smooth muscle cells, monocyte-derived macrophages, and endothelial cells. Prolonged ischemic storage time resulted in an increase in eNOS expression in the neointima. In situ hybridization showed iNOS mRNA expression by vascular cells in the neointima and media. NO produced by iNOS and eNOS may be involved, at least in part, in the pathogenesis of TA in aortic grafts. Additional studies are needed to confirm the modulatory mechanism of NO during the development of TA.  相似文献   

7.
The roles of nitric oxide derived from either the constitutive endothelial NO synthase (eNOS or NOS3) or the inducible NOS (iNOS or NOS2) in hepatic injury during endotoxemia remain controversial. To investigate this further, rats received a bolus of lipopolysaccharide (LPS) following implantation of osmotic pumps containing one of two nonselective NOS inhibitors (NMA or NAME), one of two inducible NOS inhibitors (NIL or AG), or saline. The inhibitors were infused continuously into the liver via the portal vein. Treatment of LPS-injected rats with NMA and NAME resulted in 106 and 227% increases, respectively, in circulating hepatic enzyme levels compared to LPS-treated control rats. In contrast, infusion of the iNOS-selective inhibitors had no effect on the LPS-induced hepatic necrosis. In rats receiving NAME, LPS induced greater neutrophil infiltration and ICAM-1 expression than in the LPS + saline group, whereas NIL infusion did not. The increased hepatic necrosis and PMN infiltration in the LPS + NAME group was partially prevented by a simultaneous infusion of a liver-selective NO donor. Inhibition of PMN accumulation using an anti-ICAM-1 antibody or by PMN depletion using vinblastine pretreatment, however, did not reverse the increased necrosis with NAME infusion during endotoxemia. In contrast to the assessment for necrosis, increased apoptosis was observed in the livers of LPS-treated rats receiving infusions of either NAME or NIL, but not with LPS alone. These data indicate that NO produced by eNOS may be adequate to prevent necrosis by a mechanism independent of PMN, while induced NO appears to prevent apoptosis.  相似文献   

8.
Bacterial endotoxin (LPS) releases many mediators such as interleukins, tumour necrosis factor, oxygen free radicals, toxic eicosanoids, platelet activating factor, and nitric oxide (NO). LPS is a potent inducer of inducible nitric oxide synthase (iNOS). Large amounts of NO (made by iNOS) and peroxynitrite, among other factors, are responsible for the late phase of hypotension, vasoplegia, cellular suffocation, apoptosis, lactic acidosis and multiorgan failure in endotoxic shock. Indeed, experimental and clinical use of NOS inhibitors, which do not differentiate clearly between constitutive endothelial NOS (ceNOS) and iNOS, prevents LPS-induced hypotension. However, many detrimental effects of such NOS inhibitors are also reported, including increases in pulmonary resistance, decreases in cardiac output and organ perfusion, and even an increase in mortality of experimental animals. We believe that, in lungs, NO made by ceNOS plays a protective role against the pneumotoxic effects of LPS-released lipids such as thromboxane, leukotrienes and PAF. This is why selective iNOS inhibitors like aminoguanidine or thiourea derivatives might be preferred over nonselective NOS inhibitors for the treatment of septic shock. However, since iNOS-derived NO seems to have more than just a destructive action, the selective iNOS inhibition may be not as beneficial as expected. Accordingly, inhalation of NO gas or NO-donors in septic shock might be a complementary treatment to the use of NOS inhibitors.  相似文献   

9.
In a recent study, we found marked increases in nitric oxide (NO) production and endothelial and inducible NO synthase (eNOS and iNOS) expressions with calcium channel blockade in rats with chronic renal failure. This study was undertaken to determine whether enhanced NO production with calcium channel blockade is a direct effect of this therapy or a consequence of the associated hemodynamic and humoral changes. We tested the effects of a calcium channel blocker, felodipine (10(-5), 10(-6), and 10(-7) mol/L), on nitrate and nitrite (NOx) generation, Ca2+-dependent and -independent NOS activity, and eNOS and iNOS protein masses in proliferating and quiescent rat aortic endothelial cells in culture. Compared with vehicle alone, felodipine significantly increased NOx generation, Ca2+-dependent NOS activity, and eNOS protein mass in proliferating and quiescent endothelial cells. Felodipine did not modify the stimulatory action of 10% fetal calf serum on DNA synthesis (thymidine incorporation) and cell proliferation. Ca2+-independent NOS activity and iNOS protein expression were negligible and unaffected by calcium channel blockade. NOx production and NOS expression were greater in proliferating cells than in quiescent cells. Thus, calcium channel blockade upregulates endothelial NO production in vitro, confirming our previous in vivo study. This observation indicates that the reductions in cytosolic [Ca2+] and vasodilation with calcium channel blockade are not only due to inhibition of Ca2+ entry but also to an NO-cGMP mediated mechanism.  相似文献   

10.
Nitric oxide (NO), generated by endothelial (e) NO synthase (NOS) and neuronal (n) NOS, plays a ubiquitous role in the body in controlling the function of almost every, if not every, organ system. Bacterial and viral products, such as bacterial lipopolysaccharide (LPS), induce inducible (i) NOS synthesis that produces massive amounts of NO toxic to the invading viruses and bacteria, but also host cells by inactivation of enzymes leading to cell death. The actions of all forms of NOS are mediated not only by the free radical oxidant properties of this soluble gas, but also by its activation of guanylate cyclase (GC), leading to the production of cyclic guanosine monophosphate (cGMP) that mediates many of its physiological actions. In addition, NO activates cyclooxygenase and lipoxygenase, leading to the production of physiologically relevant quantities of prostaglandin E2 (PGE2) and leukotrienes. In the case of iNOS, the massive release of NO, PGE2, and leukotrienes produces toxic effects. Systemic injection of LPS causes induction of interleukin (IL)-1 beta mRNA followed by IL-beta synthesis that induces iNOS mRNA with a latency of two and four hours, respectively, in the anterior pituitary and pineal glands, meninges, and choroid plexus, regions outside the blood-brain barrier, and shortly thereafter, in hypothalamic regions, such as the temperature-regulating centers, paraventricular nucleus containing releasing and inhibiting hormone neurons, and the arcuate nucleus, a region containing these neurons and axons bound for the median eminence. We are currently determining if LPS similarly activates cytokine and iNOS production in the cardiovascular system and the gonads. Our hypothesis is that recurrent infections over the life span play a significant role in producing aging changes in all systems outside the blood-brain barrier via release of toxic quantities of NO. NO may be a major factor in the development of coronary heart disease (CHD). Considerable evidence has accrued indicating a role for infections in the induction of CHD and, indeed, patients treated with a tetracycline derivative had 10 times less complications of CHD than their controls. Stress, inflammation, and infection have all been shown to cause induction of iNOS in rats, and it is likely that this triad of events is very important in progression of coronary arteriosclerosis leading to coronary occlusion. Aging of the anterior pituitary and pineal with resultant decreased secretion of pituitary hormones and the pineal hormone, melatonin, respectively, may be caused by NO. The induction of iNOS in the temperature-regulating centers by infections may cause the decreased febrile response in the aged by loss of thermosensitive neurons. iNOS induction in the paraventricular nucleus may cause the decreased nocturnal secretion of growth hormone (GH) and prolactin that occurs with age, and its induction in the arcuate nucleus may destroy luteinizing hormone-releasing hormone (LHRH) neurons, thereby leading to decreased release of gonadotropins. Recurrent infections may play a role in aging of other parts of the brain, because there are increased numbers of astrocytes expressing IL-1 beta throughout the brain in aged patients. IL-1 and products of NO activity accumulate around the plaques of Alzheimer's, and may play a role in the progression of the disease. Early onset Parkinsonism following flu encephalitis during World War I was possibly due to induction of iNOS in cells adjacent to substantia nigra dopaminergic neurons leading to death of these cells, which, coupled with ordinary aging fall out, led to Parkinsonism. The central nervous system (CNS) pathology in AIDS patients bears striking resemblance to aging changes, and may also be largely caused by the action of iNOS. Antioxidants, such as melatonin, vitamin C, and vitamin E, probably play an important acute and chronic role in reducing or eliminating the oxidant damage produced by NO.  相似文献   

11.
1. Guanidines, amidines, S-alkylisothioureas, and recently, mercaptoalkylguanidines have been described as inhibitors of the generation of nitric oxide (NO) from L-arginine by NO synthases (NOS). We have recently demonstrated that guanidinoethyldisulphide (GED), formed from the dimerisation of mercaptoethylguanidine (MEG), is a novel inhibitor of nitric oxide synthases. Here we describe the pharmacological properties of GED on purified NOS isoforms, various cultured cell types, vascular ring preparations, and in endotoxin shock. 2. GED potently inhibited NOS activity of purified inducible NOS (iNOS), endothelial NOS (ecNOS), and brain NOS (bNOS) enzymes with Ki values of 4.3, 18 and 25 microM, respectively. Thus, GED has a 4 fold selectivity for iNOS over ecNOS at the enzyme level. The inhibitory effect of GED on ecNOS and iNOS was competitive vs. L-arginine and non-competitive vs. tetrahydrobiopterin. 3. Murine J774 macrophages, rat aortic smooth muscle cells, murine lung epithelial cells, and human intestinal DLD-1 cells were stimulated with appropriate mixtures of pro-inflammatory cytokines or bacterial lipopolysaccharide to express iNOS. In these cells, GED potently inhibited nitrite formation (EC50 values: 11, 9, 1 and 30 microM, respectively). This suggests that uptake of GED may be cell type and species-dependent. The inhibitory effect of GED on nitrite production was independent of whether GED was given together with immunostimulation or 6 h afterwards, indicating that GED does not interfere with the process of iNOS induction. 4. GED caused relaxations in the precontracted vascular ring preparations (EC50: 20 microM). Part of this relaxation was endothelium-dependent, but was not blocked by methylene blue (100 microM), an inhibitor of soluble guanylyl cyclase. In precontracted rings, GED enhanced the acetylcholine-induced, endothelium-dependent relaxations at 10 microM and caused a slight inhibition of the relaxations at 100 microM. The vascular studies demonstrate that the inhibitory potency of GED on ecNOS in the ring preparations is considerably lower than its potency against iNOS in the cultured cells. These data suggest that the selectivity of GED towards iNOS may lie, in part, at the enzyme level, as well as differential uptake by cells expressing the various isoforms of NOS. 5. In a rat model of endotoxin shock in vivo, administration of GED, at 3 mg kg-1 bolus followed by 10 mg kg-1 h-1 infusion, starting at 90 min after bacterial lipopolysaccharide (LPS, 15 mg kg-1, i.v.), prevented the delayed fall in mean arterial blood pressure, prevented the development of the vascular hyporeactivity to noradrenaline of the thoracic aorta ex vivo and protected against the impairment of the endothelium-dependent relaxations associated with this model of endotoxaemia. The same bolus and infusion of the inhibitor did not alter blood pressure or ex vivo vascular reactivity in normal animals over 90 min. 6. Administration of GED (10 mg kg-1, i.p.) given at 2 h after LPS (120 mg kg-1, i.p.) and every 6 h thereafter caused a significant improvement in the survival rate in a lethal model of endotoxin shock in mice between 12 and 42 h. 7. In conclusion, we found that GED is a competitive inhibitor of iNOS activity. Its selectivity towards iNOS may lie both at the enzyme level and at the level of cell uptake. GED has beneficial effects in models of endotoxin shock that are driven by iNOS. GED or its derivatives may be useful tools in the experimental therapy of inflammatory conditions associated with NO overproduction due to iNOS expression.  相似文献   

12.
Monophosphoryl lipid A (MPL) is a derivative of lipopolysaccharide (LPS) with reduced toxicity which has been shown to modulate various immune functions in monocytes. We examined whether human monocytes can be stimulated to produce nitric oxide (NO) and its catalytic enzyme nitric oxide synthase (NOS). Monocytes were stimulated with LPS or MPL and both NOS and NO (as nitrite) production were measured. MPL at high doses (> 100 micrograms/ml) stimulated monocytes to release NO that was significantly greater than both the control and LPS-treated monocytes (p < 0.05). NO release by control cells and the LPS treated cells was not significantly different. Both arginase and N-monomethyl arginine (NMLA) inhibited the MPL stimulated release of NO (p < 0.01). MPL significantly increased inducible NOS (iNOS) expression as measured by both fluorescent microscopy and flow cytometry (p < 0.05). Similarly, both soluble NOS (sNOS) and particulate NOS (pNOS) activity were significantly up-regulated by MPL (p < 0.05). Significant correlations were found between pNOS expression and sNOS release (r = 0.72, p < 0.0001) and between 12 h NO release and sNOS production (r = 0.44, p < 0.005). These experiments confirm that human monocytes can be stimulated with MPL to produce NO in vitro and suggest that up-regulation of pNOS does not preclude NO release.  相似文献   

13.
14.
Inflammatory cytokines have been implicated in the reversible depression of cardiac contractile function accompanying local or systemic immune stimulation. Incubation of cardiac myocytes with soluble components in the supernatant from cultured rat lung macrophages activated with endotoxin decreases their contractile response to beta-adrenergic stimulation through the induction of iNOS and the subsequent production of nitric oxide by these cells. In the present study, we characterize the mechanisms underlying NO's attenuation of adrenergic responsiveness in cardiac myocytes. iNOS was induced in cultured ventricular myocytes from adult rats by incubation for 20 h with conditioned medium from lipopolysaccharide (LPS)-activated macrophages. iNOS induction did not induce any alteration in beta-adrenergic receptor density or affinity, Galphai protein abundance, or adenylyl cyclase activity in cultured myocytes. Myocyte exposure to activated macrophage-conditioned medium markedly attenuated the elevation of cAMP in response to isoproterenol (Iso, 2 nM). Induction of iNOS with the macrophage-conditioned medium also potentiated the Iso-induced increase in myocyte cGMP. This cGMP increase was totally abolished by NOS inhibitors. NOS inhibition also returned the attenuated cAMP response to 2 nM Iso to levels observed in control cells. Pre-incubation of the cells in isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, also partly reversed the attenuation of cAMP increase with 2 nM Iso in cells expressing iNOS. Brief (15 min) exposure of myocytes to the NO donor, S-nitrosoacetylcysteine (SNAC, 100 micro M) which produced a three-fold increase in intracellular cGMP, also decreased by half the contractile response of cardiac myocytes to Iso (2 nM). We conclude that NO endogenously produced by iNOS decreases the intracellular levels of cAMP in response to beta-adrenergic stimulation in isolated cardiac myocytes, in part through a cGMP-mediated mechanism. This effect may participate in the NO-dependent depression of cardiac function following cytokine exposure.  相似文献   

15.
Nitric oxide (NO) is a short-lived molecule with messenger and cytotoxic functions in nervous, cardiovascular, and immune systems. Nitric oxide synthase (NOS), the enzyme responsible for NO synthesis, exists in three different forms: the neuronal (nNOS), present in discrete neuronal populations; the endothelial (eNOS), present in vascular endotheliun, and the inducible isoform (iNOS), expressed in various cell types when activated, including macrophages and glial cells. In this study, we have investigated the possible involvement of NO in Wallerian degeneration and the subsequent regeneration occurring after sciatic nerve ligature, using histochemistry and immunocytochemistry for the three NOS isoforms, at different postinjury periods. Two days after lesion, the three NOS isoforms are overexpressed, reaching their greatest expression during the second week. nNOS is upregulated in dorsal root ganglion neurons, centrifugally transported and accumulated in growing axons. eNOS is overexpressed in vasa nervorum of the distal stump and around ligature, and iNOS is induced in recruited macrophages. These findings indicate that different cellular sources contribute to maintain high levels of NO at the lesion site. The parallelism between NOS inductions and well-known repair phenomena suggests that NO, acting in different ways, may exert a beneficial effect on nerve regeneration.  相似文献   

16.
17.
Nitric oxide (NO) is synthesized from L-arginine by a family of enzymes known as the nitric oxide synthases (NOS). We have recently shown a NOS similar to constitutive brain NOS (bNOS) and endothelial NOS (ecNOS) to be present in spermatozoa. The aim of this study is to investigate NO production by human spermatozoa and the effects of stimulation and inhibition of NOS. This was carried out using the Iso-NO, an isolated NO meter and sensor, which provides rapid, accurate and direct measurements of NO. Semen samples with normozoospermic and asthenozoospermic profiles were prepared using a direct swim-up technique. Basal concentrations of NO and stimulated NO production were measured after exposure to the calcium ionophore (A23187; 0.01-10 microM) a potent activator of constitutive NOS. NO production in human spermatozoa was significantly increased by the addition of A23187 30 seconds after stimulation. Furthermore, this response was greatly diminished by pre-incubating the samples with competitive inhibitors of L-arginine, the substrate for NOS, before treatment with calcium ionophore. In the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-nitro-L-arginine (L-NA) or N(G)-methyl-L-arginine (L-NMMA; all at 10 microM), NO production was inhibited with a rank order of potency L-NAME > L-NMMA > L-NA which is in accordance with the inhibition of an endothelial type of constitutive NOS.  相似文献   

18.
A newly synthesized isoquinolinesulfonamide, HMN-1180 (1-(5-isoquinolinylsulfonyl)-7-methylhomopiperazine), was shown to have selective inhibitory action against rat neuronal nitric oxide synthase (nNOS) with a Ki value of 5.4 microM. Kinetic analysis indicated that the inhibition was competitive with respect to L-arginine but not to calmodulin (CaM). However HMN-1180 exhibited no significant influence up to a concentration of 1 mM on activity of endothelial NOS (eNOS) and it was less active toward inducible NOS (iNOS) (IC50 > 100 microM). Moreover, nNOS bound to a HMN-1180-coupled Sepharose column, but eNOS and iNOS did not. These results suggest that inhibition of nNOS activity is due to direct binding of the compound to the L-arginine binding site of the synthase. Several HMN-1180 derivatives were synthesized and analyzed for their inhibitory actions against nNOS, eNOS and iNOS to cast light on its structure-activity relationships. The potency of inhibition proved dependent on the position of methyl group in the homopiperazine molecule. HMN-1180 was also found to inhibit glutamate stimulated NO production generated by nNOS in the human neuroblastoma cell line SK-N-MC, thus indicating that it is useful tool for elucidating the physiological role of nNOS in neuronal function.  相似文献   

19.
BACKGROUND: Studies have shown that nitric oxide (NO) and NO synthase (NOS) inhibitors injure and protect organs after endotoxin (lipopolysaccharide [LPS]) challenge. OBJECTIVE: To test the hypothesis that LPS-induced gut injury and bacterial translocation (BT) are mediated through activation of inducible NOS (iNOS). DESIGN: A randomized, controlled study using genetically altered, iNOS gene knockout mice. SETTING: University research laboratory. METHODS: Forty-five wild-type (iNOS+/+) or homozygous mutant (iNOS-/-) mice weighing 25 to 35 g were challenged with Escherichia coli LPS or saline (10 mg/ kg) intraperitoneally (n = 8/group). In a second set of experiments, a bacterial overgrowth model of BT (E coli monoassociation) was tested (n = 6-7/group). The mesenteric lymph nodes and cecums were cultured, and liver, ileal, and blood nitrite and nitrate levels measured 24 hours after LPS or E coli monoassociation. RESULTS: After LPS challenge, 87.5% of the iNOS+/+ mice but 0% of the iNOS-/- mice had BT to their mesenteric lymph nodes (P < .01; chi 2 analysis). Nitrite and nitrate levels of the liver, ileum, and blood were higher in the iNOS+/+ mice (P < .05). In the E coli overgrowth model, BT to mesenteric lymph nodes occurred in 100% of iNOS-/- and iNOS+/+ mice. CONCLUSIONS: In this limited study, LPS-induced BT did not occur in iNOS-deficient mice, suggesting that LPS induction of increased iNOS activity is necessary for LPS-induced BT to occur. In contrast, iNOS activation does not seem to be necessary in a bacterial overgrowth model of BT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号