首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the addition of 0.6% Sc and simultaneous addition of 0.2% Sc and 0.1% Zr exerted a remarkable effect on grain refinement of as-cast Al–Mg alloys, changing typical dendritic microstructure into fine equiaxed grains. Such effect was found to be related to the formation of primary particles, which acted as heterogeneous nucleation sites for α-Al matrix during solidification. Primary particles formed in Al–Mg–Sc–Zr alloy could be identified as the eutectic structure consisting of multilayer of ‘Al3(Sc,Zr)?+?α-Al?+?Al3(Sc,Zr)’, with a ‘cellular-dendritic’ mode of growth. In addition, an attractive comprehensive property of as-cast Al–5Mg alloy due to the addition of 0.2% Sc and 0.1% Zr was obtained.  相似文献   

2.
Effect of homogenization annealing on the existence form of zirconium in Al-0.2wt.%Zr alloy and effect of various existence form of zirconium on the recrystallization behavior of Al-0.2wt.%Zr cold-rolled (total deformation is 92.8 %) sheet are studied. The results show that large numbers of nearly spherical Al3Zr (L12) nanoparticles precipitated from aluminum matrix after homogenizing at 475 °C for 24 h. Moreover, due to the precipitation of Al3Zr particles, the hardness and electrical conductivity of the as-cast Al-0.2wt.%Zr alloy is increased from 25.1±0.5 HV 3 and 54.0±0.2 %IACS to 28.6±0.7 HV 3 and 56.2±0.1 %IACS, respectively. Hence, zirconium exists as solid solution state in the as-cast Al-0.2wt.%Zr alloy and metastable Al3Zr phase in the homogenized alloy. Moreover, the recrystallization temperature of the pure aluminum without addition of zirconium is 300 °C, while the recrystallization temperature of the Al-0.2wt.%Zr alloy without and with homogenization is about 350 °C and 400 °C, respectively. Obviously, the solid solution state of zirconium has certain effect on retarding the recrystallization of aluminum alloy, while the nanometer Al3Zr particles can inhibit the recrystallization of aluminum alloy effectively and increase the recrystallization temperature remarkably.  相似文献   

3.
Secondary precipitation takes place in alloy 7050 during slow quenching after solution and results in a significantly decreased content of Mg, Zn elements. Optical microscopy, transmission electron microscopy (TEM), and electron backscatter diffraction (EBSD) study showed the distribution of Al3Zr particles plays a vital role in quenching process. The equilibrium η phases mainly precipitate at Al3Zr particles within the recrystallized grains and other high energy areas (primarily grain boundaries). The influence of the processing (homogenization, hot rolling and solution) parameter on the quench sensitivity is also investigated by mechanical property examination (T6 temper). A ramping heat homogenization, controlled hot rolling (67% rolling reduction and 3-5 s−1 deformation rate) and two-stage solution treatment result in lesser recrystallization and fewer high angle grain boundaries, and lower the boundary angles within sub-structures. The decreasing number of heterogeneous precipitation sites endows the study alloy with good quenching sensitivity and better mechanical properties.  相似文献   

4.
Abstract

This paper studied the primary Al3(Sc,Zr) particles formed during solidification in three Al–Sc–Zr alloys with various Zr contents. It has been shown that the primary Al3(Sc,Zr) particles formed during solidification since the Sc and Zr concentrations are above the solid solubility limit in Al matrix. Scanning electron microscopy line scanning results indicated that the distributions of Sc, Zr and Al atoms in the primary Al3(Sc,Zr) particles differ a lot from those in the secondary Al3(Sc,Zr) particles formed during annealing. In the primary Al3(Sc,Zr) particles, both Sc and Zr contents are found from rim to the centre of the particles, with an increasing trend from the rim to the centre, while the Al content drops sharply on the rim of the particle and slightly from the rim to the centre.  相似文献   

5.
In situ formation of Al2O3–ZrO2–Y2O3 composite ceramic coating on ZAlSi12Cu3Ni2 aluminum alloy was successfully prepared by plasma electrolytic oxidation (PEO) technology in a zirconate electrolytic solution. The morphologies, phase components, the thermal diffusion coefficient and thermal conductivity of the composite coatings were investigated by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction and laser pulse tester. The results indicate that the composite coatings are relatively dense and uniform in thickness, and predominantly composed of Al2O3, c-Y0.15Zr0·85O1·93Vo0·07(Vo-oxygen vacancies), monoclinic ZrO2 (m-ZrO2) and littleY2O3. The composite coatings exhibit a gradient distribution in phase component from the surface to the inner part. With the increase of the applied voltage, the micropores, the discharges products, thickness and the ZrO2 content of the composite coatings increase. With the oxidation time increasing, the surface of coating generates oxide ceramic particles around the holes and accumulates repeatedly. The content of zirconium is the higher on the surface and interface. The content of Al is less and it shows that the ceramic coating contains mainly the zirconium oxide. This is attributed to the presence of micropores and microcracks, plus the extremely fine grain size and the presence of an amorphous phase. When considered in conjunction with the possible thickness range, it’s clear that this PEO coatings offer considerable promise as thermal barriers.  相似文献   

6.
A novel lightweight high-entropy alloy Al2NbTi3V2Zr was fabricated by vacuum hot pressing. The effects of sintering temperature (1200–1550°C) on the microstructure, hardness and corrosion resistance of the alloy were investigated. Results showed that Al2NbTi3V2Zr mainly consisted of simple cubic matrix and (Zr, Al)-based intermetallic phase (α-phase) at sintering temperatures of 1200–1350°C. Moreover, the matrix phase transformed from simple cubic to body-centred cubic phase, and (Ti, Zr, Al)-based intermetallic precipitated from the matrix at temperature of 1450°C. The fabricated Al2NbTi3V2Zr alloy had low density of 5.05–5.23?g?cm–3, high hardness of 510–728?HV and excellent corrosion resistance in 10?wt-% HNO3 solution.  相似文献   

7.
Abstract

6351 Al–Al4SiC4 composite has been developed through stir casting route by incorporation of fine TiC powder in 6351 Al melt. Simultaneous effects of the generation of in-situ particles (Al4SiC4 and Al3Ti) and grain refinement were observed. The in-situ generated Al4SiC4 particles were found to act as nucleation sites for primary α (causing grain refinement) along with engulfment effect promoting uniform particle distribution. As the volume fraction of Al4SiC4 particles increased, the dendritic solidification was suppressed (more equiaxed grains appeared) and overall grain size of the matrix decreased. Besides, the precipitation of Al3Ti occurred at the dislocation enriched region. Accordingly, hardness of the composite was improved with increasing content of Al4SiC4 particles.  相似文献   

8.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及室温拉伸、剥落腐蚀、晶间腐蚀等测试方法,研究了微量的Mn和Zr对Al-Zn-Mg-Cu铝合金的组织和性能各向异性的影响。结果表明,在Al-Zn-Mg-Cu-Ti合金中,分别添加微量的Mn和Zr,合金中对应析出细小弥散的Al6Mn和Al3Zr相,这两相均能抑制基体再结晶,促使合金的晶粒纵横比增大。合金的力学性能、抗晶间腐蚀和剥落腐蚀性能提高,但性能各向异性增大。同时,结果显示Zr对合金的组织和性能各向异性的影响显著大于Mn。  相似文献   

9.
Abstract

Retrogression and reaging produces coarsening of grain boundary precipitates and thereby improves resistance to stress corrosion cracking. At the same time it causes pronounced heterogeneous precipitation on dispersoids of E (Al18Cr2Mg3) phase inside the grain of 7075 alloy. Such heterogeneous precipitation does not occur on the coherent dispersoids of Al3Zr phase in 7050 alloy and its absence leads to higher strength compared with 7075 alloy. Supplementary examination of laboratory alloys 7075-Zr and 7075-Cr differing only in transition metal content supports the above result. This effect is probably the reason why retrogression and reaging (T77 heat treatment) is recommended for alloys containing zirconium but not for those containing chromium.

MST/1898  相似文献   

10.
In this study, the microstructural evolution of an as-cast Al–Zn–Mg–Cu alloy (AA7085) during various homogenization schemes is investigated. It is found that in a single-stage homogenization scheme, some of the primary eutectic gets transformed into the Al2CuMg phase at 400 °C, and the primary eutectic and Al2Cu phase gradually dissolve into the alloy matrix at 450 °C. The Al3Zr particles are mainly precipitated at the center of the grain because Zr is peritectic. However, the homogeneous distribution of the Al3Zr particles improves and the fraction of Al3Zr particles increases in two-stage homogenization scheme. At the first low-temperature (e.g., 400 °C) stage, the Al3Zr particles are homogeneously precipitated at the center of the grain by homogeneous nucleation and may be heterogeneously nucleated on the residual second-phase particles at the grain boundary regions. At the second elevated-temperature (e.g., 470 °C) stage, the Al3Zr nuclei become larger. A suitable two-stage homogenization scheme for the present 7085-type Al alloy is 400 °C/12 h + 470 °C/12 h.  相似文献   

11.
The effects of adding the alloy element Sc to Al alloys on strengthening, recrystallization and modification of the grain microstructure have been investigated. The combination of Sc and Zr alloying not only produces a remarkable synergistic effect of inhibition of recrystallization and refinement of grain size but also substantially reduce the amount of high-cost additional Sc. In this work, the microstructures and corrosion behavior of a new type of Al-Cu-Mg-Sc-Zr alloy with Sc/Zr ratio of 1/2 were investigated.The experimental results showed that the Sc and Zr additions to Al-Cu-Mg alloy could strongly inhibit recrystallization, refine grain size, impede the segregation of Cu element along the grain boundary and increase the spacing of grain boundary precipitates. In addition, adding Sc and Zr to Al-Cu-Mg alloy effectively restricts the corrosion mechanism conversion associated with Al2 Cu Mg particles, which resulted in the change of the cross-section morphology of inter-granular corrosion from an undercutting to an elliptical shape. The susceptibility to inter-granular corrosion was significantly decreased with increasing Sc and Zr additions to the Al-Cu-Mg alloy. The relationships between microstructures evolution and inter-granular corrosion mechanism of Al-Cu-Mg-Sc-Zr alloys were also discussed.  相似文献   

12.
The site preference of Zr atoms in Ti 3Al and the phase stability of Ti2ZrAl are examined using first-principles electronic structure total energy calculations. Of the sixteen possible ways in which Ti, Zr and Al atoms can be arranged, in the lattice sites corresponding to D019 structure of Ti3Al, to obtain Ti2ZrAl, it is shown that Zr atoms prefer to get substituted at the Ti sites. It is further shown that among the seven crystal structures considered, D019-like and L12-like are the competing ground-state structures of Ti2ZrAl. The above results are in agreement with the experimental results reported in the literature. Calculated values of equilibrium lattice parameters, heat of formation and bulk modulus of Ti2ZrAl are presented. The basis for the structural stability and bonding are analysed in terms of the density of states. Between the two possibleB2-like structures, Ti2ZrAl shows enhanced stability for the one where Zr is substituted in the Ti sublattice, which again is in agreement with the experimental observation.  相似文献   

13.
Abstract

The relationships of diboride phases in Al–Ti(Zr)–B alloys with a variable Ti/B ratio close to the stoichiometry of TiB2 were studied. The formation of diboride solid solutions was confirmed. A grain refinement mechanism is proposed as that diboride particles in the Al–Ti–B master alloys reacting with aluminium upon adding into an aluminium melt and release titanium into the melt through forming a (Ti,Al)B2 solid solution and maintain a thin dynamic Ti rich layer on the surfaces of the (Ti,Al)B2 particles, which nucleates α-Al grains in solidification. The poisoning effect of zirconium on grain refinement of aluminium by Al–Ti–B master alloys is also discussed.  相似文献   

14.
Abstract

The (Fe88Si12)95Al5 alloy was prepared by an aluminothermics. The (Fe88Si12)95Al5 alloy is composed of spheroidic α-Fe(Si,Al) precipitate with size of 20–50 nm and γ-Fe(Si,Al) matrix. The yield strength and fracture strain in compression of the (Fe88Si12)95Al5 alloy are 1500 MPa and 23% respectively. The shear bands propagating in the compressive deformation are arrested by the precipitation particles that resulted in large ductility and high strength simultaneously.  相似文献   

15.
Rapidly solidified powders of Al–5.0Cr–4.0Y–1.5Zr (wt%) were prepared by using a multi-stage atomization-rapid solidification powder-making device. The atomized powders were sieved into four shares with various nominal diameter level and were fabricated into hot-extruded bars after cold-isostatically pressing and vaccum degassing process. Influence of atomized powder size on microstructures and mechanical properties of the hot-extruded bars was investigated by optical microscopy, X-ray diffraction, transmission electronic microscopy with EPSX and scanning electron microscopy. The results show that the fine atomized powders of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy attains supersaturated solid solution state under the exist condition of multi-stage rapid solidification. With the powder size increasing, there are Al20Cr2Y (cubic, a = 1.437 nm) and Ll2 Al3Zr (FCC, a = 0.407 nm) phase forming in the powders, and even lumpish particles of Al20Cr2Y appearing in the coarse atomized powders, as can be found in the as-cast master alloy. Typical microstructures of the extruded bars of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy can be characterized by fine grain FCC α-Al matrix with ultra-fine spherical particles of Al20Cr2Y and Al3Zr. But a small quantity of Al20Cr2Y coarse lumpish particles with micro-twin structures can be found, originating from lumpish particles of the coarse powders. The extruded bars of rapidly solidified Al–5.0Cr–4.0Y–1.5Zr aluminum alloy by using the fine powders eliminated out too coarse powders have good tensile properties of σ0.2 = 403 MPa, σb = 442 MPa and δ = 9.4% at room temperature, and σ0.2 = 153 MPa, σb = 164 MPa and δ = 8.1% at high temperature of 350 °C.  相似文献   

16.
通过显微组织观察和室温拉伸实验,研究了微量Sc在Al-Cu-Li-Zr合金中的存在形式和对合金微观组织和拉伸性能的影响.结果表明:微量Sc在Al-Cu-Li-Zr合金中主要以初生Al3(Sc,Zr)和次生Al3(Sc,Zr)两种形式存在.初生的Al3(Sc,Zr)是合金凝固过程中形成的,可成为有效的非均质形核中心,显著细化铸态晶粒组织,具有细晶强化和增塑作用;次生Al3(Sc,Zr)是合金在热加工过程中析出的,对位错和亚晶界起钉扎作用,稳定亚结构并有效抑制合金再结晶,具有亚结构强化和直接析出强化作用.因此,加入微量Sc的Al-Cu-Li-Zr合金的强度和塑性大大提高.  相似文献   

17.
In situ composites of TiAl reinforced with Al2O3 particles are successfully synthesized from an elemental powder mixture of Ti, Al and Nb2O5 by the hot-press-assisted reaction synthesis (HPRS) method. The as-prepared composites are mainly composed of TiAl, Al2O3, NbAl3, as well as small amounts of the Ti3Al phase. The in situ formed fine Al2O3 particles tend to disperse on the matrix grain boundaries of TiAl resulting in an excellent combination of matrix grain refinement and uniform Al2O3 distribution in the composites. The Rockwell hardness and densities of TiAl based composites increase gradually with increasing Nb2O5 content, and the flexural strength and fracture toughness of the composites have the maximum values of 634 MPa and 9.78 MPa m1/2, respectively, when the Nb2O5 content reaches 6.62 wt.%. The strengthening mechanism was also discussed.  相似文献   

18.
Influence of Sc content on microstructure and stress corrosion cracking behavior of medium strength Al–Zn–Mg alloy have been investigated by optical microscopy, scanning electron microscopy, electron backscatter diffraction, transmission electron microscopy and slow strain rate test. The results indicate that the addition of Sc results in the formation of the quaternary coherent Al_3(Sc, Zr, Ti) dispersoids during homogenization treatment, which will inhibit the dynamic recrystallization behavior. The number density of Al_3(Sc, Zr, Ti) particles increases with the increase of Sc content, and thus the recrystallization fraction of hot-extruded alloy is reduced and the peak strength in two-stage artificial aging sample is enhanced. At the same time, the wide of precipitation free zone is reduced, and the content of Zn and Mg in grain boundary particles and precipitation free zone is increased with the increase of Sc content. In peak-aged state, the 0.06 wt% Sc added alloy shows the better stress corrosion cracking resistance than the Sc-free alloy because of the reduction of recrystallization fraction and the interrupted distribution of grain boundary precipitates along grain boundary. However, the further addition of Sc to 0.11 wt% will result in the deterioration of stress corrosion cracking resistance due to the increase of electrochemical activity of grain boundary particles and precipitation free zone as well as hydrogen embrittlement.  相似文献   

19.
We have used a phase field model to study spinodal decomposition in polycrystalline materials in which the grain size is of the same order of magnitude as the characteristic decomposition wavelength (Xsu). In the spirit of phase field models, each grain (i) in our model has an order parameter (η i) associated with it;η i has a value of unity inside the ith grain, decreases smoothly through the grain boundary region to zero outside the grain. For a symmetric alloy of composition,c = 0–5, our results show that microstructural evolution depends largely on the difference in the grain boundary energies, ygb, of A-rich (a) and B-rich (β) phases. If Y gb α is lower, we find that the decomposition process is initiated with an a layer being formed at the grain boundary. If the grain size is sufficiently small (about the same as λsd), the interior of the grain is filled with the β phase. If the grain size is large (say, about 10λSD or greater), the early stage microstructure exhibits an A-rich grain boundary layer followed by a B-rich layer; the grain interior exhibits a spinodally decomposed microstructure, evolving slowly. Further, grain growth is suppressed completely during the decomposition process.  相似文献   

20.
Herein, the precipitation of Al3Zr during one- and two-step homogenization processes is studied by the transmission electron microscopy method, and its effect on recrystallization is investigated by the electron backscattering diffraction technique after the same hot compression and solution treatment, respectively. The results show that when the temperature reaches 430 °C, just some small Al3Zr dispersoids are visible in samples that undergo one-step treatment. As the first-step homogenization temperature increases from 365 to 430 °C, Al3Zr radius increases from 9.4 to 19.1 nm while the number density decreases rapidly from 1201 to 183 μm−3. In addition, the average radius of Al3Zr increases to 22.1 nm while the number density decreases to 76 μm−3 when the sample is homogenized at 500 °C/24 h. After a double-step homogenization with decreased first-step temperature, lower recrystallization fraction is obtained. Therefore, the optimal homogenization treatment is determined to be 365 °C/16 h + 500 °C/24 h, after which the most desirable Al3Zr distribution and the smallest recrystallization fraction are obtained during thermomechanical process. This result can provide a more appropriate parameter for homogenization treatment in order to achieve a more dispersed distribution, which will result in stronger pinning force during the thermomechanical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号