首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composite textile reinforcement draping simulations allows the conditions for a successful process to be determined and, most importantly, the positions of the fibres after forming to be known. This last point is essential for the structural computations of the composite part and for resin injection analyses in the case of LCM processes. Because the textile composite reinforcements are multiscale materials, continuous (macro) approaches and discrete (meso) approaches that model the yarns have been developed. The finite element that is proposed in this paper for textile fabric forming is composed of woven unit cells. The mechanical behaviour of these is analyzed by 3D computations at the mesoscale regarding biaxial tensions and in plane shear. The warp and weft directions of the woven fabric can be in arbitrary direction with respect to the direction of the element side. This is very important in the case of multi-ply deep drawing and when using remeshing. The element is efficient because it is close to the physic of the woven cell while avoiding the very large number of unknowns in the discrete approach. A set of validation tests and forming simulations on single ply and multi-ply are presented and show the efficiency of the approach. In particular the importance of the in-plane shear behaviour is emphasized in the case of a draping on a cube.  相似文献   

2.
3D warp interlock fabric can be used as a fibrous reinforcement for composite material. Despite of the numerous research papers dealing with this specific woven structure, few researches were conducted to clearly define this multi-layer fabric. Moreover, in many research papers, unskilled scientists of weaving technology have some difficulty to describe the different components of the 3D warp interlock fabric and sometimes make some confusion between the different architecture. Then, with a lack of a clear definition of these 3D multi-layer fabrics, most of the research papers are conducted on a very limited number of structures such as orthogonal, angle and layer to layer interlock.Thus, based on different definitions proposed by skilled scientists, a new general definition of a 3D warp interlock fabric has been proposed to better describe the position of the several yarns located inside the 3D woven structure. Thanks to this improved definition, we hope that the scientific community will use it in order to better design new architectures and conduct finer research based on these product parameters.  相似文献   

3.
A hyperelastic constitutive law is proposed to describe the mechanical behaviour of 3D layer to layer angle interlock composite reinforcements. The objective of this model is to simulate shaping of thick textile preforms for RTM processes. After the identification of the independent deformation modes of initially orthotropic reinforcements, a strain energy potential is built up based on strain invariants representative to those modes assuming an additive composition of them. The parameters of the proposed constitutive model are identified using standard and specific mechanical tests performed on a 3D interlock material. Then, the model is validated on forming simulations on a single curve and double curve shapes. Three point bending tests on thick interlock reinforcements have been analysed experimentally and numerically. The specific transformation of cross sections is depicted by the proposed hyperelastic model.  相似文献   

4.
In this paper, we are interested in the forming of composite fabric by deep-drawing. Two approaches (geometrical and mechanical) are proposed for the simulation of the composite fabric forming. The geometrical approach is based on a fishnet model. It is well adapted to preliminary design phase and to give a suitable estimate of the resulting flat patterns. The mechanical approach is based on a meso-structural approach. It allows us to take into account the mechanical properties of composite fabric (fibres and resin) and the various dominant modes of deformation of fabrics during the forming process. During simulation of composite fabric forming, where large displacement and relative rotation of fibres are possible, severe mesh distortions occur after a few incremental steps. Hence an automatic mesh generation with remeshing capabilities is essential to carry out the finite element analysis. Some numerical simulations of forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of the proposed approaches.  相似文献   

5.
Textile reinforcement forming is frequently used in aeronautic and automobile industries as a composite manufacturing process. The double-curved shape forming may be difficult to control and can lead to defects. Numerical simulation analysis can predict the suitable forming conditions and minimize the defects. Wrinkling as one of the most common flaws can be experienced easily during textile composite forming for certain specific shapes, for example the square box. In order to product a composite square box without wrinkles, a surface 3D weaving process has been developed to weave directly the shape of final part without the step of 2D preforming. In the surface 3D weaving the three directions are completely designed. The warp and weft yarns on all the surfaces of square box are absolutely under control and the final 3D ply has a homogeneous fibre volume fraction.  相似文献   

6.
In aerospace industry, thicker and more complex composite parts are needed. Multilayered reinforcement is largely used as the traditional method. Recently, three-dimensional (3D) fabrics are developed to replace the multilayered reinforcements in certain applications to increase the performance in thickness direction of part, e.g. interlock structure. Currently, the development of tufting technology can be employed to produce the 3D textile composite reinforcements. The tufting parameters, such as tufting density, tufting length and tufting yarn orientations, can be completely controlled by user. In order to improve the understanding of formability of the tufted 3D fabric during manufacturing, the present work analyzes the preforming behaviours of tufted 3D reinforcement in the hemispherical stamping process. Also the preforming behaviours are compared with the samples of the multilayered forming. The experimental data demonstrated the influence of tufting yarns on the material draw-in, interply sliding, and winkling phenomenon during forming. Furthermore, the orientations of tufting yarn affected the forming results, which leaded to misalignment defect in the zone of strong in-plane shear.  相似文献   

7.
A finite element made of woven unit cells under biaxial tension and in-plane shear is proposed for the simulation of fabric forming. The simulation is made within an explicit dynamic approach and is based on a simplified dynamic equation accounting for tension and in-plane shear strain energy. The biaxial tensile properties (given by two surfaces) and the in-plane shear properties (given by a curve) can be determined both by biaxial tensile tests and picture frame experiments or obtained by mesoscopic 3D finite element analyses of the woven unit cell. The interior load components of the proposed finite element are calculated explicitly and simply from the tensions and shear torque on four woven cells. The results obtained by the simulations of a hemispherical forming process on a very unbalanced fabric are compared to experiments. It is shown that the tension strain energy permits to describe the asymmetry of the response but that the computation of wrinkles and of the deformed states when the locking angle is exceeded needs to take the in-plane shear stiffness and its evolution with shear angle into account.  相似文献   

8.
In this paper, the formability of a single layer E-glass non-crimp 3D orthogonal woven reinforcement (commercialized under trademark 3WEAVE® by 3Tex Inc.) is experimentally investigated. The study involves the forming process of the 3D fabric on two complex moulds, namely tetrahedron and double-dome. The tests are assisted by 3D digital image correlation measurement to have a continuous registration of the fabric local deformation. Moreover, the results of bending tests in warp and weft direction are detailed to enlarge the mechanical properties data set of the 3D reinforcement, necessary for understanding its deformability capacities in forming processes. The elevated bending stiffness of the 3D fabric means that use of a blank-holder during forming is not required. The reinforcement has a good drapability and it is able to form complex shapes without defects (wrinkles and fibre distortions). The collected experimental results represent an important dataset for numerical simulations of any complex shape with the considered 3D fabric composite reinforcement.  相似文献   

9.
The use of textile reinforcing structures provides enormous possibilities in the design of lightweight composites. However, the physical mechanisms during fabric forming are complex and far from being fully understood especially in multilayer draping. The aims of this study are the analyses of interaction mechanisms of individual textile layers during the forming operation and of defects arising from interactions. In basic experiments of the carbon woven fabric, friction properties and the fabric integrity were investigated. In single and multilayer draping experiments the findings were transferred to the composite preforming process. Interaction defects are characterised as interdependency between the acting inter-ply shear forces and the structural integrity of the fabric. The defects resulting from the interactions depend on the configuration of the fabric (e. g. shearing) and the acting normal forces. The reduction of friction is crucial for the preform quality but is opposite to an actively force-controlled material manipulation.  相似文献   

10.
Identifying novel natural fibers/fabrics with proper properties as reinforcement material is a new challenge in the field of bio-composites. Hence, the aim of this paper is to study the possibility of using a natural fabric extracted from Manicaria saccifera palm as a novel reinforcement in composites. This fabric was extensively characterized by chemical composition analysis, infrared spectroscopy (FTIR) analysis, morphological studies (SEM), thermo-gravimetric analysis (TGA) and physical /mechanical properties studies. From SEM analysis it was identified globular protrusions spread uniformly over the fiber which could help the mechanical interlock with the resin. As well, Manicaria fabric showed good thermal stability, low density, low moisture content and good tensile properties. Further, their properties are comparable to most natural cellulose fabrics and some synthetic fabrics, such as fiber glass fabrics. Manciaria saccifera fabric showed to be a suitable candidate as natural reinforcement material for the development of bio- composite.  相似文献   

11.
An efficient finite element model has been developed in Abaqus/Explicit to solve highly non-linear fabric forming problems, using a non-orthogonal constitutive relation and membrane elements to model bi-axial fabrics. 1D cable-spring elements have been defined to model localised inter-ply stitch-bonds, introduced to facilitate automated handling of multi-ply preforms. Forming simulation results indicate that stitch placement cannot be optimised intuitively to avoid forming defects. A genetic algorithm has been developed to optimise the stitch pattern, minimising shear deformation in multi-ply stitched preforms. The quality of the shear angle distribution has been assessed using a maximum value criterion (MAXVC) and a Weibull distribution quantile criterion (WBLQC). Both criteria are suitable for local stitch optimisation, producing acceptable solutions towards the global optimum. The convergence rate is higher for MAXVC, while WBLQC is more effective for finding a solution closer to the global optimum. The derived solutions show that optimised patterns of through-thickness stitches can improve the formability of multi-ply preforms compared with an unstitched reference case, as strain re-distribution homogenises the shear angles in each ply.  相似文献   

12.
The final geometry of 3D warp interlock fabric needs to be check during the 3D forming step to ensure the right locations of warp and weft yarns inside the final structure. Thus, a new monitoring approach has been proposed based on sensor yarns located in the fabric thickness. To ensure the accuracy of measurements, the observation of the surface deformation of the 3D warp interlock fabric has been joined to the sensor yarns measurements. At the end, it has been revealed a good correlation between strain measurement done globally by camera and locally performed by sensor yarns. Additionally, sensor yarns located in the two directions of the 3D warp interlock fabric have revealed a different forming behaviour depending on the architecture and the different slope values of the punch.  相似文献   

13.
Forming thick, complex shapes with several layers is needed in high technology fields. During forming, defects can occur and have to be taken into account because they can significantly affect the mechanical performance of the part. This experimental study shows that, when working with dry fabric forming, the type and number of defects is a function of the punch geometry, the process parameters, the orientation of the fabric with respect to the punch and the inter-ply friction. Inter-ply friction has a huge effect on the quality of the preform when inter-ply sliding occurs. This inter-ply friction leads to several overhanging yarn shocks that generate high tangential forces, which inhibit the relative sliding of plies. In addition, to reduce the number and amplitude of defects, the layers subjected to severe defects can be placed in the inner position where they are subjected to the compression applied by the upper layers.  相似文献   

14.
Textile fabric geometry determines textile composite properties. Textile process mechanics determines fabric geometry. In previous papers, the authors proposed a digital element model to generate textile composite geometry by simulating the textile process. The greatest difficulty encountered with its employment in engineering practice is efficiency. A full scale fiber-based digital element analysis would consume huge computational resources. Two advances are developed in this paper to overcome the problem of efficiency. An improved contact-element formulation is developed first. The new formulation improves accuracy. As such, it permits a coarse digital element mesh. Then, a static relaxation algorithm to determine fabric micro-geometry is established to replace step-by-step textile process simulation. Employing the modified contact element formulation in the static relaxation approach, the required computer resource is only 1–2% of the resource required by the original process. Two critical issues with regards to the digital element mesh are also examined: yarn discretization and initial yarn cross-section shape. Fabric geometries derived from digital element analysis are compared to experimental results.  相似文献   

15.
Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈?700 °C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy’s law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).  相似文献   

16.
为了准确描述复合材料编织物的各向异性力学特性,首先,基于纤维增强复合材料连续介质力学理论提出了一种考虑纤维双拉耦合的复合材料编织物各向异性超弹性本构模型,该模型中单位体积的应变能被解耦为便于参数识别的纤维拉伸变形能、双拉耦合引起的挤压变形能和纤维间角度变化产生的剪切变形能;然后,给出了模型参数的确定方法,并通过拟合单轴拉伸、双轴拉伸和镜框剪切实验数据得到了本构模型参数;最后,利用该模型对双轴拉伸和镜框剪切实验进行了数值仿真,并将模拟结果与实验结果对比分析。结果表明:提出的本构模型适用于表征复合材料编织物在成型过程中由于大变形引起的非线性各向异性力学行为。所得结论表明提出的本构模型具有简单、实用的优点,且材料参数容易确定,可为复合材料编织物成型的数值模拟和工艺优化奠定理论基础。   相似文献   

17.
针对传统内聚力损伤模型(CZM)无法考虑层内裂纹对界面分层影响的缺点,提出了一种改进的适用于复合材料层合板低速冲击损伤模拟的CZM。通过对界面单元内聚力本构模型中的损伤起始准则进行修正,考虑了界面层相邻铺层内基体、纤维的损伤状态及应力分布对层间强度和分层扩展的影响。基于ABAQUS用户子程序VUMAT,结合本文模型及层合板失效判据,建立了模拟复合材料层合板在低速冲击作用下的渐进损伤过程的有限元模型,计算了不同铺层角度和材料属性的层合板在低速冲击作用下的损伤状态。通过数值模拟与试验结果的对比,验证了本文方法的精度及合理性。  相似文献   

18.
Theory of fabric-reinforced viscous fluids   总被引:3,自引:0,他引:3  
Constitutive equation are formulated for flow of fabric-reinforced composite materials which show viscous response at the forming temperature. It is shown that in general the characterization for linear viscous response involves five viscosity coefficients, but this number may be reduced as a result of material symmetry of the fabric. In the case in which the material is a plane sheet, the rheological behaviour is described by a single function of the current angle between the fibre directions. The theory is applied to the analysis of the ‘picture-frame’ experiment, and it is shown that this experiment provides a method of measuring the response function. The effect of symmetry of the fabric architecture is considered, and it is found that for some fabric symmetries the theory allows the possibility of different responses to in-plane shearing in different shearing directions, as has been observed in picture-frame experiments. The general theory for nonlinear viscosity is also formulated, and specialized to the analysis of plane sheets, and in particular to the case of a power law fluid. In this case also, it is shown that the material can be characterized by a single response function of the rate-of deformation and the angle between the fibre directions.  相似文献   

19.
This research addresses the effects of quasi-UD non-crimp fabric (NCF) design parameters on the fabric architecture and on the permeability tensor. These fabrics are designed for the Liquid Resin Infusion (LRI) of large and thick composite parts. Three fabrics’ parameters intended to bring a flow enhancement to the NCF are investigated: the stitch spacing, the stitch pattern and the weft tow lineal weight. Image analysis is undertaken to characterize the morphology of non-crimp fabric composite. A new continuous permeability measurement method based on compressive tests is proposed to relate the permeability of the quasi-UD NCF to the design parameters during the infusion process. The latter are proven to influence significantly both the fabric architecture and the permeability tensor coefficients.  相似文献   

20.
Concrete is a composite material composed of water, sand, coarse granular material called aggregate and cement that fills the space among the aggregate particles and glues them together. Conventional building structures are made up of steel skeleton with concrete impregnation. These are very heavy weight structures with steel vulnerable to corrosion. The conventional concrete structures tend to undergo large deformations in the event of a strong earthquake. Mechanical simulation of various textile structural concretes is carried out successfully for their ductility behaviour. 3D woven reinforced concretes display superior ductile character showing ray of hope to develop seismic resistant building. Simulation of three 3D woven fabrics and their composites was carried to predict ductility and strengths of fabric reinforced concrete structures. Maximum deformation was observed for beam reinforced with orthogonal interlock fabric under the same load and minimum deformation was observed for plain concrete. Maximum equivalent stress was observed to be highest for plain concrete followed by beam reinforced with angle interlock fabric followed by orthogonal fabric and warp interlock fabric under similar loading conditions. From the results it was clear that 3D fabric reinforced structures are more ductile than the traditional steel reinforced structures. Hence 3D fabric reinforced concrete structures are much better in strength and ductility as compared to conventional construction materials. Among the three 3D fabric, orthogonal fabric reinforced composites are most ductile and are also less stiff. They can deform more than the other two fabric composites. Hence, orthogonal fabric reinforced composites can undergo higher deformations without collapsing. These composites can be more elastic under earthquake shaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号